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1 Introduction

The assignment, or matching, problems, such as the Linear Assignment Problem (LAP) and the
Quadratic Assignment Problem (QAP), are of theoretical and practical importance in a number of fields,
from discrete mathematics and computer science to archeology and sports (for details on theory and
applications of assignment problems see, among others, Pardalos and Pitsoulis, 2000; Pentico, 2007;
Burkard et al., 2009). The underlying combinatorial structure of the feasible set common to these prob-
lems is that of a perfect matching on a bi-partite graph, i.e., a bijective mapping between the elements of
two sets. The present endeavor is concerned with generalizations of the classical assignment problems
where the underlying combinatorial structure is based on hypergraph matchings.

A hypergraph is a pair H D .V; E/ where V is the set of vertices, and E is the set of hyperedges;
a hyperedge e 2 E is a subset of V containing two or more vertices (Berge, 1989; Bollobás, 1998).
Similarly to regular graphs, a hypergraph H is called k-partite if its vertices can be partitioned into k
independent subsets such that no vertices within a subset are connected by an edge. If all edges of a
hypergraph contain exactly r vertices, the hypergraph is called r-uniform.

In this paper we restrict our discussion to d -partite d -uniform hypergraphs Hd jn D .V; E/, whose sets
of vertices V are partitioned into d independent sets Vj , each of cardinality n: V D

Sd
jD1 Vj , jVj j D n.

Consequently, each hyperedge of Hd jn contains exactly one vertex from each independent set Vj , and
thus it can be represented as a vector .i1; : : : ; id / 2 V1 � � � � � Vd . This convention allows us to denote
the vertices of each Vk as 1; 2; : : : ; n, so that a hyperedge can be presented as .i1; : : : ; id / 2 f1; : : : ; ngd .
Finally, it is assumed that the d -partite d -uniform hypergraph Hd jn is complete, i.e., it contains nd

hyperedges.

Then, a (perfect) matching � on Hd jn is formed by a set of n hyperedges that do not share any vertices,
or, equivalently, which have the property that each vertex of the hypergraph belongs to exactly one
hyperedge:

� D
˚
fe1; : : : ; eng

ˇ̌
ei 2 E ; ei \ ej D ;; 1 � i; j � n

	
:
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Since a hyperedge of Hd jn contains exactly one vertex from each of d independent sets Vk , it can be
represented as a vector .i1; : : : ; id / 2 JnKd , where the set JnK D f1; : : : ; ng is used to label the vertices
of each Vk . Then, the set M.Hd jn/ of perfect matchings on Hd jn can be represented in mathematical
programming form as

M.Hd jn/ D
(
x 2 f0; 1gn

d

ˇ̌̌̌
ˇ X

ik2JnK
k2JdKnfrg

xi1���id D 1; ir 2 JnK; r 2 JdK

)
; (1)

where xi1��� id D 1 if the hyperedge .i1; : : : ; id / is included in the matching, and xi1��� id D 0 otherwise.

If the cost of hypergraph matching � is given by ˆ.�/, the general combinatorial optimization problem
on hypergraph matchings can be formulated as

min
n
ˆ.�/

ˇ̌̌
� 2M.Hd jn/

o
; (2)

where M.Hd jn/ is the set of all perfect matchings on the hypergraph Hd jn. A mathematical program-
ming formulation of the general problem (2) can be written as

min ˆ.x/ (3a)

s. t.
nP

i2D1

� � �

nP
idD1

xi1��� id D 1; i1 D 1; : : : ; n; (3b)

nP
i1D1

� � �

nP
ik�1D1

nP
ikC1D1

� � �

nP
idD1

xi1��� id D 1; ik D 1; : : : ; n; k D 2; : : : ; d � 1; (3c)

nP
i1D1

� � �

nP
id�1D1

xi1��� id D 1; id D 1; : : : ; n; (3d)

x 2 f0; 1gn
d

; (3e)

where xi1��� id D 1 if the hyperedge .i1; : : : ; id / is included in the matching, and xi1��� id D 0 otherwise.

The mathematical programming formulation (3) of the hypergraph matching problem (2) makes it natural
to call problem (3) a multidimensional assignment problem (MAP), where d stands for the number of
“dimensions”, and n is the number of “elements per dimension” (recall that d is equal to the number of
independent subsets of vertices Vk in the hypergraph Hd jn, and n denotes the number of vertices in each
Vk). In the sequel, we will use the terms “combinatorial optimization problem on hypergraph matchings”
(or “hypergraph matching problem” for short) and “multidimensional assignment problem” in reference
to (2)–(3) interchangeably.

Depending on the particular form of ˆ.�/, a number of combinatorial optimization problems on hyper-
graph matchings can be formulated. In this paper, we analyze several problems that arise as special cases
of (2)–(3) when the matching cost function ˆ has the form

ˆ.�/ D
a

ei1 ;:::; eim2�

�ei1 ��� eim ; (4)

where
`

is an operator defined over some set of cost elements f�g indexed by the hyperedges of Hd jn.
For instance, if the cost function in (2) is defined asˆ.�/ D

P
e2�

�e, or, equivalently, as a linear form over
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variables xi1��� id in (3), one obtains the so-called Linear Multidimensional, or Multi-index Assignment
Problem (LMAP):1

Zd jn D min
nP

i1D1

� � �

nP
idD1

�i1��� id xi1��� id

s. t. (3b)–(3e):
(5)

Taking ˆ.x/ as a quadratic form over x 2 f0; 1gn
d

, or, in other words, ˆ.�/ D
P

ei ; ej2�
�eiej , leads to

the Quadratic Multidimensional Assignment Problem (QMAP):

Qd jn D min
nP

i1D1

� � �

nP
idD1

nP
j1D1

� � �

nP
jdD1

�i1��� id j1���jd xi1��� id xj1��� jd

s. t. (3b)–(3e):
(6)

Similarly, if one is interested in minimizing the largest element of the corresponding linear or quadratic
forms, the Linear Bottleneck MAP

Wd jn D min max
i1;:::;id2f1;:::;ng

�i1��� id xi1��� id

s. t. (3b)–(3e)
(7)

and Quadratic Bottleneck MAP

Ud jn D min max
i1;:::id ;j1;:::jd2f1;:::;ng

�i1��� id j1���jd xi1��� id xj1��� jd

s. t. (3b)–(3e)
(8)

problems are obtained.

A matching � D f.i .1/1 ; : : : ; i
.1/

d
/; : : : ; .i

.n/
1 ; : : : ; i

.n/

d
/g on Hd jn can be conveniently presented in the

matrix form,

� D

0BBBB@
i
.1/
1 i

.1/
2 � � � i

.1/

d

i
.2/
1 i

.2/
2 � � � i

.2/

d
:::

:::
:::

i
.n/
1 i

.n/
2 � � � i

.n/

d

1CCCCA ; (9)

where each column
�
i
.1/

k
; i
.2/

k
; : : : ; i

.n/

k

�>, k D 1; : : : ; d; is a permutation of the set JnK. Since the rows
of matrix (9) represent hyperedges of Hd jn, they can be permuted so that in the k-th dimension we have�
i
.1/

k
; i
.2/

k
; : : : ; i

.n/

k

�
D .1; : : : ; n/. This allows for a permutation representation of a feasible solution

of (2):

� D

0BBB@
1 �1.1/ � � � �d�1.1/

2 �1.2/ � � � �d�1.2/
:::

:::
:::

n �1.n/ � � � �d�1.n/

1CCCA D .�; �1; : : : ; �d�1/; (10)

1Problem (5) is also known in the literature as the axial MAP and is distinguished from the so-called planar MAP, whose
underlying combinatorial structure is based on latin squares; see, e.g., Burkard et al. (2009).
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where each �k W JnK 7! JnK is a permutation of the set JnK, and � is the identical permutation, �.i/ D i ,
i D 1; : : : ; n.

The multidimensional assignment problems (5)–(8) also admit useful permutation formulations; for in-
stance, the Linear MAP (5) can equivalently be written as

Zd jn D min
�1;:::;�d�12…n

nX
iD1

�i�1.i/����d�1.i/; (11)

where �k is a permutation of the set JnK, and …n is the set of all such permutations. Problems (6)–(8)
can be reformulated analogously. The permutation formulation makes it easy to see that the cardinality
of the feasible set of (2) or, equivalently, (3), isˇ̌

M.Hd jn/
ˇ̌
D nŠd�1:

The Linear MAP (5) was first introduced by Pierskalla (1968), and had found numerous applications in
the areas of data association, sensor fusion, multi-sensor multi-target tracking (Murphey et al., 1998a;
Poore, 1994a; Kirubarajan et al., 2001; Poore and Gadaleta, 2006; Pusztaszeri et al., 1996; Andrijich
and Caccetta, 2001; Chummun et al., 2001), image recognition (Veenman et al., 1998), and, recently,
peer-to-peer refueling of space satellites (Dutta and Tsiotras, 2008); for a detailed discussion of the
applications of the MAP, see, e.g., Burkard and Çela (1999a) and Burkard (2002). A three-dimensional
version .d D 3/ of the Quadratic MAP (6) was considered by Samra et al. (2005) and Hahn et al. (2008)
in application to design of robust wireless transmission systems.

The objective of the present paper was to elucidate the properties of large-scale combinatorial optimiza-
tion problems on hypergraph matchings (5)–(8) by analyzing the random instances of the corresponding
problems, i.e., by assuming that the assignment costs �i1��� id ��� in (5)–(8) are iid random variables from
a specified probability distribution. The introduced multidimensional assignment problems (5)–(8) con-
stitute the primary focus of the present paper; as it will be seen below, the proposed techniques admit
extension to other forms of cost function ˆ given by (35) in the general formulation (2)–(3).

Related work Studies of random instances of combinatorial problems based on bipartite graph match-
ings that are given as special cases of (2)–(3) with d D 2 have been an active area of research for the last
several decades. A number of important results have been obtained in the scope of random linear and
quadratic assignment problems, some of them within the last few years; for a detailed review of random
assignment problems see Krokhmal and Pardalos (2009).

Considerable attention has been paid to studies of the limiting behavior of the expected optimal value of
the Linear Assignment Problem, a special case of (5) with d D 2. In the works of Walkup (1979); Karp
(1987); Lazarus (1993); Goemans and Kodialam (1993); Olin (1992); Coppersmith and Sorkin (1999),
a series of successively tighter upper and lower bounds for the expected cost EŒZ2jn� of LAP have been
obtained in the assumption that the assignment costs are iid uniform on Œ0; 1� or exponential with mean
1. Bounds on EŒZ2jn� for general cost distributions have been furnished in Frenk et al. (1987), and Olin
(1992) presents bounds for Z2jn that hold with probability 1.

Perhaps, the most widely known results concerning the random LAP are the conjectures by Mézard and
Parisi (1985) and Parisi (1998) that the expected optimal cost of a random LAP with iid uniform Œ0; 1� or

4



exponential with mean 1 assignment costs satisfies

lim
n!1

EŒZ2jn� D
�2

6
� 1:645 and, moreover, EŒZ2jn� D

nX
kD1

1

k2
: (12)

The existence of the limit in (12) was argued by Mézard and Parisi (1985) using a non-rigorous replica
method and was experimentally observed in Donath (1969) and Pardalos and Ramakrishnan (1993), but a
theoretical proof of the limit in (12) was first furnished by Aldous (1992, 2001). Within the last five years,
the second conjecture in (12) for finite-sized LAPs due to Parisi (1998) has been proven independently by
Linusson and Wästlund (2004) and Nair et al. (2005), and its generalizations (Coppersmith and Sorkin,
1999; Linusson and Wästlund, 2000; Buck et al., 2002) for the case of random LAPs with non-square
matrices (the so-called k-assignment problem) have been proven in Wästlund (2005a,b).

The methods of probabilistic analysis have played a pivotal role in explicating the computational proper-
ties of many hard combinatorial optimization problems, and, particularly, the Quadratic Assignment
Problem that is given by (6) with d D 2. While the QAP is known to be NP-complete and non-
approximable (Sahni and Gonzales, 1976) and thus very difficult to solve exactly (currently, instances
of the QAP of sizes up to n D 30 can be solved rotinely, see Anstreicher, 2003; Loiola et al., 2007), it
was noticed that good quality sub-optimal solutions of the QAP can be obtained relatively easily with
many heuristic algorithms. It turns out that this strange behavior can be explained within the probabilis-
tic framework, i.e., by analyzing the random instances of the QAP. In particular, Burkard and Fincke
(1982a) were the first to point out that in a random QAP the ratio between the minimum (optimal) cost
Q2jn and the maximum cost Q2jn approaches 1 in probability as the size of the problem increases:

lim
n!1

P
�
Q2jn

Q2jn
� 1CO

�
n�0:225

��
D 1: (13)

Frenk et al. (1985) and Rhee (1988, 1991) established stronger versions of (13), including a proof that
the cost ratio in (13) converges to unity not only in probability, but almost surely (a.s.). It must be noted
that the remarkable observation of Burkard and Fincke (1982a) has led to the discovery of an entire class
of combinatorial optimization problems with similar behavior (Burkard and Fincke, 1985; Szpankowski,
1995; Albrecher et al., 2006).

A number of results along the lines of (12) and (13) have been obtained for other combinatorial optimiza-
tion problems based on bipartite graph matchings, such as linear and quadratic bottleneck assignment
problems, bi-quadratic assignment problem, etc., in Pferschy (1996); Burkard et al. (1994); Burkard and
Fincke (1982b); Albrecher (2005), and others; see Krokhmal and Pardalos (2009) for details.

As regards the combinatorial optimization problems on hypergraph matchings (2)–(3), relatively few
attempts have been made in the literature to investigate their properties in large-scale instances. Dyer,
Frieze, and McDiarmid (1986) derived an upper bound on the expected optimal cost EŒZLP

d jn
� of the linear

programming relaxation of random LMAP (5) under the assumption that hyperedge costs �i1��� id are iid
uniform on Œ0; 1�:

EŒZLP
d jn� � d=n

d�2:

More recently, random instances of the Linear MAP (5) have been analyzed using the methods of sta-
tistical physics by Martin, Mézard, and Rivoire (2005) in an attempt to generalize the corresponding
conjecture (12) of Mézard and Parisi (1985) for the random LAP; unfortunately, the approach employed
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by the authors did not yield an explicit expression for the expected optimal cost of random Linear MAP
(5).

Krokhmal et al. (2007) have established a limiting value of the expected optimal cost EŒZd jn� of random
Linear MAP (5) with absolutely continuous cost distributions F that admit a power series asymptotical
expansion in the neighborhood of the left-end point F�1.0/ of their support sets:

lim
n or d!1

1

n
EŒZd jn� D F�1.0/ � inf f t jF.t/ > 0 g: (14)

2 On optimality of a polynomial algorithm for random linear multidi-
mensional assignment problem

The Linear Multidimensional Assignment Problem (LMAP) is a higher-dimensional generalization of
the well-known two-dimensional, or Linear Assignment Problem (LAP) (see, e.g., Papadimitrou and
Steiglitz, 1998; Burkard et al., 2009). A graph-theoretic formulation of the LAP of cardinality n presents
it as finding a minimum-cost perfect matching on a balanced bipartite graph with 2n vertices, provided
that the cost of matching is defined as the sum of edge costs. Similarly, a d -dimensional LMAP of
cardinality n can be formulated as finding a perfect matching on a balanced d -partite d -uniform hyper-
graph with dn vertices, such that the sum of the costs of hyperedges in the matching is minimized (see,
among others, Berge, 1989; Bollobás, 1998 for general references on hypergraphs). If the cost of hy-
peredge .i1; : : : ; id /, where i1; : : : ; id 2 f1; : : : ; ng, is given by �i1��� id , the mathematical programming
formulation of the LMAP of dimensionality d and cardinality n reads as

min
nX

i1D1

� � �

nX
idD1

�i1��� id xi1��� id

s. t.
nX

i2D1

� � �

nX
idD1

xi1��� id D 1; i1 D 1; : : : ; n;

nX
i1D1

� � �

nX
ik�1D1

nX
ikC1D1

� � �

nX
idD1

xi1��� id D 1;
ik D 1; : : : ; n;

k D 2; : : : ; d � 1;

nX
i1D1

� � �

nX
id�1D1

xi1��� id D 1; id D 1; : : : ; n;

xi1��� id 2 f0; 1g; ik D 1; : : : ; n; k D 1; : : : ; d;

(15)

where xi1��� id D 1 if the hyperedge .i1; : : : ; id / is included in the matching, and xi1��� id D 0 otherwise.
It is easy to see that a feasible solution of (15) is given by n hyperedges

�
i
.r/
1 ; : : : ; i

.r/

d

�
, r D 1; : : : ; n,

such that in each dimension k the set
˚
i
.1/

k
; : : : ; i

.n/

k

	
is a permutation of f1; : : : ; ng. Hence, problem

(15) admits the following geometric interpretation: given a d -dimensional matrix ˆ D f�i1��� id g 2 Rnd ,
find such a permutation of its “rows” and “columns” in all dimensions that the sum of the diagonal
elements is minimized, and thus is also known in the literature as “axial” multidimensional, or multi-
index assignment problem.

The LMAP (15) was first introduced by Pierskalla (1968), and has found numerous applications in the
areas of data association, image recognition, multi-sensor multi-target tracking, peer-to-peer satellite
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refueling, and so on (for a detailed discussion of the properties and applications of the LMAP, see, for
example, Burkard and Çela, 1999b; Burkard, 2002; Burkard et al., 2009).

In contrast to the LAP that is polynomially solvable, the LMAP with d � 3 is generally NP-complete,
a fact first established by Karp (1972) for the 3-dimensional (d D 3) assignment problem (15). For
a discussion of approximation properties of the LMAP (15), see, e.g., Spieksma (2000); in particular,
Crama and Spieksma (1992) have shown that even in the case when costs �i1i2i3 of the 3-dimensional
LMAP are decomposable, i.e., �i1i2i3 D di1i2 C di2i3 C di1i3 , there is no polynomial algorithm that
yields an "-approximate solution for any " > 0.

Exact and heuristic algorithms for three- and higher-dimensional LMAPs were proposed in Balas and
Saltzman (1991); Poore (1994a,b); Poore and Robertson (1997); Murphey et al. (1998a,b); Andrijich and
Caccetta (2001), and others. In particular, Balas and Saltzman (1991) introduced a number of heuris-
tics for the 3-dimensional LMAP; Andrijich and Caccetta (2001) report that on randomly generated
problems, some of these heuristics yield solutions very close to optimality. These observations find a
theoretical substantiation in Kravtsov (2005), who has demonstrated that if the assignment costs in (15)
are iid random variables from a discrete distribution satisfying certain properties, a simple greedy al-
gorithm produces asymptotically optimal solutions with high probability, when the cardinality n of the
LMAP (15) increases infinitely.

In this work, we strengthen and generalize the results of Kravtsov (2005), by showing that a greedy
algorithm produces "-approximate solutions of random LMAP almost surely (a. s.), or, in other words,
that the cost of the greedy solution converges strongly to the optimal cost. Further, we extend the analysis
to random LMAPs whose costs are continuously distributed, including distributions with unbounded
support sets.

Results concerning asymptotic optimality of heuristic algorithms on randomly generated problems are
well known in the context of other hard combinatorial optimization problems, such as the Quadratic
Assignment Problem (QAP), which is also known to be NP-complete and non-approximable (see, among
others, Burkard et al., 2009; Krokhmal and Pardalos, 2009, and references therein). In the case of random
QAP, asymptotic optimality of heuristic solution methods is a manifestation of the fact that for instances
of random QAP large enough, all its feasible solutions are asymptotically optimal (Burkard and Fincke,
1982a). Moreover, an entire class of combinatorial optimization problems exists that shares this property
with the QAP (Burkard and Fincke, 1985; Szpankowski, 1995). The LMAP (15), however, does not
belong to this class; recent investigations of asymptotic behavior of random LMAPs (Krokhmal et al.,
2007; Krokhmal and Pardalos, 2011) entail that only a vanishingly small fraction the feasible set of a
random LMAP is "-optimal.

2.1 A greedy algorithm for LMAP with discrete iid random costs

Algorithm 1 describes the greedy heuristic for the LMAP that is in the focus of this work. The heuristic
starts by finding the smallest hyperedge cost of the LMAP (15), which we denote by �

i
.1/
1 ��� i

.1/

d

, and then
removing from the cost matrix ˆ the cost elements �

i1��� i
.1/

`
��� id

for each ` 2 f1; : : : ; dg, i.e., the costs of

the hyperedges that are not feasible with respect to the smallest-cost hyperedge
�
i
.1/
1 ; : : : ; i

.1/

d

�
. Then, the

procedure is repeated, and upon finding the smallest hyperedge cost �
i
.2/
1 ��� i

.2/

d

in the reduced cost array

ˆ, the costs of hyperedges that are infeasible with respect to the hyperedges
�
i
.k/
1 ; : : : ; i

.k/

d

�
, k D 1; 2,

are discarded, and so on. After n steps, n costs �
i
.k/
1 ��� i

.k/

d

are obtained, which have the property that for

7



each ` D 1; : : : ; d the indices
˚
i
.1/

`
; : : : ; i

.n/

`

	
are all different, i.e., a feasible solution of (15) is found.

Algorithm 1 A greedy heuristic for LMAP (15)

1: input: Cost matrix ˆ D
˚
�i1��� id j .i1; : : : ; id / 2 f1; : : : ; ng

d
	
2 Rnd

2: initialize: zZn WD 0; for each ` 2 f1; : : : ; dg define set N` WD f1; : : : ; ng

3: for k WD 1 to n do
4: define a submatrix ˆ.k/ 2 R.n�kC1/d of the cost matrix ˆ as

ˆ.k/ WD
˚
�i1��� id j .i1; : : : ; id / 2 N1 � � � � �Nd

	
5: find the smallest element �

i
.k/
1 ��� i

.k/

d

of the submatrix ˆ.k/:�
i
.k/
1 ; : : : ; i

.k/

d

�
2 arg min

˚
�i1��� id 2 ˆ

.k/
	

6: let zZn WD zZn C �i.k/1 ��� i
.k/

d

7: for each ` 2 f1; : : : ; dg update the set N` WD N`nfi
.k/

`
g

8: end for
9: for each k 2 f1; : : : ; ng define Qx

i
.k/
1 ��� i

.k/

d

WD 1 and Qxi1��� id WD 0 for all other .i1; : : : ; id /

10: output: A feasible solution Qxi1��� id of LMAP (15) and its cost zZn

Obviously, the described greedy heuristic for LMAP runs in O.ndC1/ time. The next lemma provides a
foundation for the subsequent probabilistic analysis of the greedy heuristic and is a strengthening of the
corresponding result in Kravtsov (2005).

Lemma 1. Consider a set Sn of cardinality jSnj D �n whose elements are iid random variables dis-
tributed uniformly over �n values an < : : : < bn. Assume that �n and �n increase with n such that the
following series converges: X

n

�ne
�
�n
�n <1:

Then, for n sufficiently large, the set Sn contains the minimum element an almost surely (a.s.)

Proof. To verify the statement of the lemma, it is convenient to think about the set Sn in terms of
randomly distributing jSnj D �n different objects into �n boxes. Then, define An as the event that Sn
contains the smallest element an, whence

Pf NAng � Pfat least one box is emptyg D 1 � PfBng; (16)

where Bn is the event that there are no empty boxes, for which it holds (see, e.g., Feller, 1968):

PfBng D
�nX
iD0

.�1/i

 
�n

i

!�
1 �

i

�n

��n
:

If �n and �n increase with n such that the quantity �n D �ne
�
�n
�n is bounded, that it can be shown that

each summand in the above sum is asymptotically equal to .��n/i=iŠ, whereby

PfBng ! e��n ; n!1:

8



Thus, for n sufficiently large, the probability that the set Sn does not contain the smallest element an of
the distribution can be bounded as

Pf NAng � 1 � PfBng � 1 � e��n D �n CO.�2n/:

Since by the conditions of the Lemma,
P
n �n < 1, from the Borel-Cantelli lemma we immediately

have that Pf NAn i.o.g D 0 , PfAn ev.g D 1: �

Assuming that the assignment costs of the LMAP (15) are positive, a feasible solution with cost zZn is an
"-approximation of the optimal cost Z�n of LMAP of cardinality n if it satisfies

zZn � Z
�
n.1C "/: (17)

The next theorem establishes the conditions on the discrete distribution of assignment costs in (15) under
which the greedy algorithm delivers an "-approximation of the optimal cost of the LMAP, or, more
precisely, the ratio of the greedy solution cost to the optimal cost approaches unity almost surely.

Theorem 1. Consider LMAP (15) with d � 3, n � 2, whose cost coefficients are iid random variables
distributed uniformly over n˛ values2 an < : : : < bn, where an > 0 and ˛ > 0. Then, there exists
a constant M > 0 such that the greedy algorithm produces a solution with the cost zZn, which for
sufficiently large n satisfies

zZn

Z�n
� 1 �M

�
bn

an
� 1

�
n˛=d�1 ln1=d n a. s.; (18)

where Z�n is the optimal cost of the LMAP.

Proof. From the description of the greedy heuristic, it follows that the cost of the feasible solution can
be represented as

zZn D

nX
kD1

�
i
.k/
1 ��� i

.k/

d

D

nX
kD1

Q�k; (19)

where each Q�k is equal to the smallest element of a submatrix ˆ.k/:

Q�k D min fa j a 2 ˆ.k/g; k D 1; : : : ; n:

In general, the summation in (19) contains terms Q�k that are either equal to the smallest element an of the
distribution, or exceed it. Let Kn denote the (random) number of the summands in (19) that are greater
than an:

Kn D
ˇ̌
fk j Q�k > ang

ˇ̌
: (20)

Then, noting that 0 � Kn � n, the optimal cost Z�n of the LMAP (15) and the cost zZn returned by the
greedy heuristic can be bounded as

nan � Z
�
n �
zZn � .n �Kn/an CKnbn D nan

�
1C

Kn

n

bn � an

an

�
; (21)

2Here and in what follows we omit rounding to avoid unnecessary ramifications in exposition.
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from which it is easy to see that zZn is an "-approximate solution of (15) by means of the approximation
inequality (17) as soon as zZn � nan.1C "/. Thus, for some "n > 0 consider

P
˚
zZn > nan.1C "n/

	
� PfKn > nng;

where the inequality follows from (21) provided that n is chosen as

n D
"n

bn=an � 1
:

Observe that if Kn > nn holds, then there exists an integer � 2 f1; : : : ; ng such that � > nn and
the corresponding submatrix of ˆ with �d elements does not contain elements equal to an. Then, from
Lemma 4 it follows that for sufficiently large values of n,

P fKn > nng � Pf set of size .nn/d does not contain an g � n˛ exp

(
�
.nn/

d

n˛

)
:

Choosing the parameter "n in the form

"n D .2C ˛/
1=d

�
bn

an
� 1

�
n˛=d�1 ln1=d n;

we have that for values of n large enough,

P fKn > nng � n�2;

whence expression (18) follows by the Borel-Cantelli lemma. �

Corollary 1.1. If ˛ < d in (18) and the ratio bn=an satisfies

bn

an
D o

�
n1�˛=d ln�1=d n

�
; n� 1;

then for sufficiently large n, the greedy cost zZn is an "-approximation of the optimal cost Z�n of random
LMAP due to (17) for any " > 0 almost surely. Put differently, the cost ratio zZn=Z�n between greedy and
optimal solutions converges to unity a. s., with the convergence rate given by (18).

Remark 1.1. The intuition behind Lemma 4 and Theorem 5 is that if the elements of the cost matrix ˆ
are drawn at random from a sufficiently small set of values, then at each step of the greedy heuristic, the
submatrix ˆ.k/ will contain the smallest element from that set with sufficiently high probability. This
observation can be pressed into service to address the case when the elements of the cost matrix ˆ of the
LMAP (15) are continuous iid variables, as it is shown next.

2.2 Greedy heuristic for LMAP with continuous iid costs

In (Krokhmal et al., 2007; Krokhmal and Pardalos, 2011) it has been demonstrated that if the assignment
costs �i1��� id in LMAP (15) are iid random variables with a continuous distribution F , then asymptotic
behavior of the optimal value of random LMAP is controlled by the properties of the distribution F in
the vicinity of the left-end point F�1.0/ of the support set of the distribution, where

F�1.0/ D inf ft j F.t/ > 0g:
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In view of that, we restrict our discussion to continuous distributions F whose support sets are bounded
from above,

F�1.1/ < C1; where F�1.1/ D sup ft j F.t/ < 1g:

The next theorem generalizes the results of the previous section to continuous distributions.

Theorem 2. Consider LMAP (15) with d � 3, n � 2, whose cost coefficients are iid random variables
with a continuous distribution F that has a bounded support Œa; b�, where a > 0. Then, for any ˛ > 0,
there exists a constant M > 0 such that the greedy algorithm produces a solution with cost zZn, which
for sufficiently large n satisfies

zZn

Z�n
� 1 �

F�1.n�˛/

a
� 1CMn˛=d�1 ln1=d n a. s.; (22)

where Z�n is the optimal cost of the LMAP.

Proof. For a continuous distribution F on Œa; b� � R, define the sequence fın.k/g, k D 0; : : : ; �n, as

ın.0/ D 0; ın.k/ D �aC F
�1

�
1

�n
C F.aC ın.k � 1//

�
; k D 1; : : : ; �n:

The intervals Ik D .aCın.k�1/; aCın.k/�, k D 1; : : : ; �n, partition the set .a; b� into �n equiprobable
“bins”, such that for any F -distributed random variable X

PfaC ın.k � 1/ < X � aC ın.k/g D
1

�n
; k D 1; : : : ; �n:

Then, the elements of the cost matrixˆ can be labeled with �n different labels, in accordance to the “bin”
Ik that the corresponding cost element falls into. Obviously, the labels are independently and identically
uniformly distributed. Therefore, taking into account that the elements of the cost matrix ˆ that fall into
bin I1 are less than or equal to aC ın.1/, the cost zZn of the greedy solution of the MAP can be bounded
as

na � Z�n �
zZn � .n �Kn/.aC ın.1//CKnb; (23)

where Kn is equal to the number of summands in the cost zZn of the greedy solution that do not fall into
the bin I1 D .a; aC ın.1/�. Then, for any fixed "n > 0 it holds that

Pf zZn.ˆ/ > na.1C "n/g � Pf.n �Kn/.aC ın.1//CKnb > na.1C "n/g D P fKn > nng ;

where

n D
"n � ın.1/=a

b=a � 1 � ın.1/=a
:

Similarly to the arguments of Theorem 5,Kn > nn holds provided that there exists � 2 f1; : : : ; ng such
that � > nn and the corresponding submatrix of size �d does not contain elements from the interval I1,
whence

P fKn > nng � �n exp

(
�
.nn/

d

�n

)
;
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Let �n D n˛ for some ˛ > 0, then, choosing "n as

"n D
F�1.n�˛/

a
� 1C

�
b

a
�
F�1.n�˛/

a

�
.˛ C 2/1=dn˛=d�1 ln1=d n;

and taking into account that ın.1/ D F�1.n�˛/ � a D o.1/, n� 1, we obtain that

PfKn > nng � ��2=˛n D n�2;

which verifies statement (22) of the Theorem by virtue of the Borel-Cantelli lemma. �

Corollary 2.1. If ˛ < d , it follows from (22) that zZn represents an "-optimal solution of random LMAP
in the sense (17) for any " > 0, and the cost ratio zZn=Z�n converges to unity a. s. It is natural that the
value of the parameter ˛ 2 .0; d/ in (22) is selected based on the properties of F�1 at the origin so as
to increase the rate of convergence. In particular, if in some neighborhood of 0 the inverse F�1 of the
distribution F satisfies for some � > 0

F�1.u/ � aC Lu� ; L > 0; u! 0C;

then there exists a constant M1 > 0 such that

zZn

Z�n
� 1 �M1n

.1C�d/�1�1 ln1=d n a. s.

Next, we consider the case of a continuous distribution F with support of the form .�1; b�, where the
following bounds on the optimal cost of random LMAP play a key role. Namely, as shown in Krokhmal
and Pardalos (2011), the optimal valueZ�n of random LMAP with iid cost coefficients whose distribution
has a support unbounded from below, satisfies for sufficiently large n

nF�1
�

1

nd�1

�
� Z�n � nF

�1

�
3 lnn
nd�1

�
a. s. (24)

Expression (24) entails that when support of F is unbounded from below, F�1.0/ D �1, one has that
Z�n < 0 a. s. for large enough n. Note that in this case the approximation condition (17) takes the form

zZn � Z
�
n.1 � "/; " > 0: (25)

Taking into account (25), the following statement holds regarding the quality of the greedy solution to a
random LMAP (15).

Theorem 3. Consider LMAP (15) with d � 3, n � 2 whose cost coefficients are iid random variables
with continuous distribution F such that F�1.0/ D �1, F�1.1/ < 1. Then, the greedy algorithm
produces a solution with cost zZn that for sufficiently large n satisfies

1 �
zZn

Z�n
�

�
d � 1

n

�1=d
C

F�1
�

1

nd�1

�
F�1

�
3 lnn
nd�1

� � 1 a. s.; (26)

where Z�n is the optimal cost of the LMAP.
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Proof. Similarly to the proof of Theorem 2, let us partition the semi-infinite support .�1; b� of the
distribution F into �n “bins” .˛n.k � 1/; ˛n.k/� such that

Pf˛n.k � 1/ < X � ˛n.k/g D
1

�n
; k D 1; : : : ; �n;

where X is F -distributed random variable, and ˛n.k/ is defined as

˛n.0/ D �1; ˛n.k/ D F
�1

�
F.˛n.k � 1//C

1

�n

�
; k D 1; : : : ; �n: (27)

Then, similar arguments allow us to construct an upper bound zzZn on the greedy cost zZn in the form

zZn �
zzZn � .n �Kn/F

�1.��1n /CKnF
�1.1/;

where Nk is the number of summands in the greedy cost zZn that do not fall into the first “bin”
.�1; F�1.��1n /�.

Next, observe that if the optimal cost Z�n of the LMAP can be bounded from below and above, e.g.,

Zn � Z
�
n �
xZn;

then, given a fixed " > 0, the greedy solution cost zZn satisfies the approximation inequality (25) as soon

as the upper bound zzZn satisfies

zzZn �Zn � �"
xZn:

In view of the bounds (24) on the optimal cost of random LMAP due to (Krokhmal and Pardalos, 2011)
that hold almost surely for large enough n, define

Zn D nF
�1

�
1

3�n lnn

�
; xZn D nF

�1

�
1

�n

�
; where �n D

nd�1

3 lnn
;

and for any fixed "n > 0 consider the probability

P
n
zzZn.ˆ/ �Zn > �"n

xZn

o
D PfKn > nng; (28)

where

n D

�
F�1

�
1

3�n lnn

�
� F�1

�
1

�n

�
.1C "n/

��
F�1.1/ � F�1

�
1

�n

���1
:

Following the arguments of Theorems 5 and 2, it can be shown that for sufficiently large values of n the
probability in (28) satisfies

PfKn > nng � �n exp

(
�
.nn/

d

�n

)
: (29)
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If one selects the parameter "n in the form

"n D

F�1
�

1

3�n lnn

�
F�1

�
��1n

� C

 
1 �

F�1.1/

F�1
�
��1n

�! 1
n

�
3�n ln �n

�1=d
� 1

D

�
d � 1

n

�1=d �
1 �

ln.3 lnn/
.d � 1/ lnn

�1=d
C

F�1
�

1

3�n lnn

�
F�1

�
��1n

� � 1;

inequality (29) implies that the probability in (28) is bounded as

PfKn > nng � ��2n � n
�2

for all large enough values of n, thereby verifying the estimate (26) of approximation quality of the
greedy solution by means of the Borel-Cantelli lemma. �

Remark 3.1. In the case when the distribution F is such that

F�1
�

1

nd�1

��
F�1

�
3 lnn
nd�1

�
! 1; n!1; (30)

Theorem 3 asserts that the solution cost produced by the greedy heuristic is an "-approximation of the
optimal cost of random LMAP, for any " > 0. Condition (30) holds, for instance, for distributions
F whose inverse F�1 has a logarithmic singularity at the origin, i.e., when the following asymptotic
representation holds in the vicinity of 0:

F�1.u/ � �c0 lnˇ
1

u
; u! 0C for some c0 > 0; ˇ > 0:

Continuous distributions that satisfy this condition and whose support is bounded from above include,
for instance, exponential distribution on .�1; 0�, truncated normal distribution on .�1; b�:

F.t/ D et1.�1;0�.t/C 1.0;1/.t/; F .t/ D
ˆ.t/

ˆ.b/
1.�1;b�.t/C 1.b;1/.t/;

where ˆ.t/ is the standard normal distribution function. Observe that in the case when the inverse F�1

of the cost distribution F has, for example, a power singularity at the origin, i.e.,

F�1.u/ � �c0u
�ˇ ; u! 0C; c0; ˇ > 0;

the ratio in (30) is unbounded in n, hence no statement can be inferred from Theorem 3 regarding the
quality of the greedy solution in this case.

Remark 3.2. According to Krokhmal and Pardalos (2011), the asymptotic behavior of the optimal cost
of random LMAP (15) is determined completely by the properties of the distribution function F in the
vicinity of the left-end point of its support. Nevertheless, the requirement of boundedness from above of
the distribution’s support, F�1.1/ < 1, which is imposed in Theorems 5–3, is essential for estimating
the quality of the greedy solution, as it allows one to obtain an upper bound on the cost of the solution
produced by the greedy algorithm.
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3 On Hamming distance in hypergraph matching problems

The concept of distance between feasible solutions of optimization problems plays an important role in
combinatorial optimization. For instance, it is widely acknowledged that analysis of the problem’s fitness
landscape (Weinberger, 1990; Stadler, 1996), which comprises the set of feasible solutions, their fitness
values (costs) f .�/, and a measure d.� ; �/ of distance between solutions, can yield useful insights into the
performance and tuning of exact and heuristic algorithms.

This section discusses some properties of the Hamming distance, a popular distance measure d.� ; �/ in
combinatorial optimization, in application to problems where the underlying combinatorial structure is
based on hypergraph matchings, which generalize the well-known class of combinatorial problems on
bipartite graph matchings, such as the linear assignment problem (LAP), quadratic assignment problem
(QAP), etc. (comprehensive reviews of assignment problems can be found in, e.g., Pardalos and Pitsoulis,
2000; Burkard, 2002; Burkard et al., 2009).

The Hamming distance was first introduced by Hamming (1950) as a measure of errors (or substitutions)
that transform one string of a binary code into another, and since then has found applications in the areas
of coding theory, information theory, cryptography, combinatorial optimization, and others (Matsumoto
et al., 2006). Given two strings of equal length with characters from any alphabet (not necessarily binary),
the Hamming distance between them is usually defined as the number of positions in which these strings
disagree. The landscape structure of many combinatorial optimization problems can be investigated
using the Hamming distance. In particular, the Hamming distance defined on the set of permutations of
a given length was applied to study the fitness landscape of the quadratic assignment problem (Merz and
Freisleben, 2000). The feasible set of the QAP constitutes a special case of (1) with d D 2, and by virtue
of (10) a feasible solution of the QAP can be represented in the form � D .�; �/, whereby the Hamming
distance between two solutions �i D .�; �i / and �j D .�; �j / is equal to the number of positions in
which �i .k/ ¤ �j .k/, k D 1; : : : ; n.

It is easy to see that such a definition does not apply in the case of multidimensional assignment prob-
lems (3) with d dimensions and n elements per dimension, where a feasible solution is generally an
unordered collection of n strings of length d . Thus, for hypergraph matching problems the Ham-
ming distance can be defined in terms of the minimum number of positions in which two matchings
�i D f.i

.1/
1 ; : : : ; i

.1/

d
/; : : : ; .i

.n/
1 ; : : : ; i

.n/

d
/g and �j D f.j

.1/
1 ; : : : ; j

.1/

d
/; : : : ; .j

.n/
1 ; : : : ; j

.n/

d
/g differ

from each other. For example, the Hamming distance between the following two feasible solutions of a
d D 4 and n D 3 multidimensional assignment problem:

�1 D

0@ 1111

2222

3333

1A ; �2 D

0@ 1222

2111

3333

1A ;
is equal to 2, but not 6. In general, let us define the number of elements by which the k-th hyperedge in
�i differs from the `-th hyperedge in �j as

�k` D
.i .k/1 ; : : : ; i

.k/

d
/ � .j

.`/
1 ; : : : ; j

.`/

d
/
 D dX

rD1

Nı
i
.k/
r j

.`/
r
; (31)

where Nıij is the negation of Kronecker’s delta, Nıij D 1 � ıij . One evidently has �k` D �`k , and
0 � �k` � d . Then, the Hamming distance dH .� ; �/ between hypergraph matchings is defined as the
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optimal value of the following LAP:

dH .�i ; �j / D k�i � �j k D min
�2…n

nX
kD1

�k;�.k/; (32)

where …n is the set of all permutations � W JnK 7! JnK. Below we discuss some properties of the
introduced Hamming distance measure dH .� ; �/ as an optimal value of the linear assignment problem
(32).

3.1 Diameter of the feasible set

Given a distance measure d.� ; �/ in a combinatorial optimization problem, the diameter of the feasible
set can be defined as the maximum distance between two feasible solutions. The Hamming diameter D
of the multidimensional assignment problem (3) is then defined as the maximum value of the Hamming
distance (32):

D D max
�i ;�j2M.Hd jn/

dH .�i ; �j /: (33)

Then, we have the following simple observation:

Proposition 1. The Hamming diameter D of the feasible set of a multidimensional assignment problem
(3) of dimensionality d and cardinality n satisfies

D � n.d � 1/; (34)

with the equality attained for problems with n � d .

Proof. Inequality (34) for D follows trivially from the permutation representation (10) of a feasible
solution of the MAP (3). To show that this bound is exact for problems with n � d , consider without
loss of generality the distance between the trivial solution �1 D f.1; : : : ; 1/; .2; : : : ; 2/; : : : ; .n; : : : ; n/g
given by identity permutations �1; : : : ; �d�1 D � in (10), and a solution O� D . O�1; : : : ; O�d /, where
�1 D �, and O�k D �. O�k�1/, with � being the forward cyclical permutation. Since there are n � d

different cyclical permutations of JnK (including the identity permutation), we have that for the feasible
solutions �1 and O� the quantities �k` defined by (31) satisfty

�k` D

dX
rD1

Nık; O�r .`/ D d � 1;

whence dH .�1; O�/ D n.d � 1/. �

3.2 Expected distance to global optimum

Many heuristic solution algorithms for combinatorial problems rely, at least partly, on local search. In
the context of assignment problems, local search is often conducted by permuting several (usually, two)
positions in the current solution. In this respect, it is of interest to estimate the number of permutations
that are necessary to reach a global optimum from a current feasible solution, or, in other words, the
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Hamming distance from the given solution to the optimal one. To this end, it is convenient to assume
that the matching cost function ˆ.�/ in (3) has the form

ˆ.�/ D
a

ei1 ;:::; eim2�

�ei1 ��� eim ; (35)

where
`

is an operator defined over some set of cost elements f�g indexed by the hyperedges of Hd jn.
If the cost elements � are independent identically distributed (iid) random variables with a continuous
distribution, then problem (3) has a unique global minimum (since the costs of all feasible solutions
are different almost surely), and the location of the optimal matching is uniformly distributed over the
feasible set.

LetH denote the expected Hamming distance between the (unique) global minimum and a given feasible
solution of a random MAP; then the expected value of H can be computed as

EŒH � D E
�
EŒH j Y �

�
D

nŠd�1X
kD1

EŒH jY �PfY D kg; (36)

where the random variable Y takes value k (1 � k � nŠd�1) if k-th feasible solution is the global
minimum, and zero otherwise, and EŒH jY � is the conditional expectation of Hamming distance to the
global optimum given its location. Since 0 � H � n.d � 1/ per Proposition 1, one has

EŒH jY � D
n.d�1/X
pD0

p PfH D p jY g D
n.d�1/X
pD0

p
Np

nŠd�1
; (37)

whereNp is the number of feasible solutions located at the Hamming distance p from the given solution.
If the assignment costs f�g in (35) are iid continuous, then

EŒH � D
n.d�1/X
pD0

p
Np

nŠd�1
(38)

Again, given that the location of the global minimum is uniformly distributed, the expression for EŒH �
above can be interpreted as the expected diameter of the feasible set of (3). The expected Hamming
distance EŒH � for any distribution of assignment costs can be computed explicitly in the special case
n D 2.

Proposition 2. Consider a hypergraph matching problem (3) with cardinality parameter n D 2, and
cost function (35) where the cost elements f�g are iid random variables with a continuous distribution.
Then, the expected Hamming distance EŒH � from a given solution to the global optimum is equal to

EŒH � D
1

2d�1

8̂<̂
:
bd2 c�1X
sD1

2s

 
d

s

!
C 2d mod2

�
d

2

� 
d

bd=2c

!9>=>; ; (39)

where d mod 2 is the remainder on division of d by 2.
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Proof. Since in all dimensions of an n D 2 MAP there are only two elements, then Hamming distance
between two feasible solutions is always even: dH .�i ; �j / D 0; 2; 4; : : : ; and equals to the number of
dimensions in which the two solutions differ. It is easy to see that permuting elements in all d dimensions
of a solution leaves it unchanged; similarly, making d � 1 permutations in dimensions 2; 3; : : : ; d is the
same as permuting dimension 1, and so on. Hence, the Hamming distance between two solutions of an
n D 2 MAP may take values

H D 2s; s D 0; 1; : : : ;
j
d
2

k
;

where s is the number of dimensions permuted. The number N2s of feasible solutions that are at a
distanceH D 2s from the given solution is given by

�
d
s

�
for s D 1; : : : ; bd=2c� 1. A special case arises

when d is even and s D bd=2c D d=2, where the number of solutions that are at a distanceH D 2s D d

from a given solution is equal to 1
2

�
d
s

�
due to symmetry; for instance,

�
1212

2121

�
and

�
2121

1212

�
represent

the same solution. Observe that this does not occur when s D bd=2c and d is odd. �

In the general case, computation of the number Np of feasible solutions that are at a given distance p
from a specified solution presents significant challenges due to the combinatorial nature of its definition
via a solution of the LAP (32). An upper bound on Np can be obtained by ignoring these combinatorial
considerations.

Proposition 3. In a hypergraph matching problem (3) with d � n, the number Np of feasible solutions
located at a distance p, 2 � p � n.d � 1/, from a given solution, is bounded from above as

Np �
X

.p1;:::;pk/

 
d

k

!
kY
iD1

 
n

pi

!
D.pi /; where D.k/ D

kX
jD0

.�1/k�j

 
k

j

!
j Š; (40)

and the summation is over all vectors .p1; : : : ; pk/ such that
Pk
iD1 pi D p, 0 � pi � n, pi ¤ 1.

Proof. Expression (40) is obtained by selecting k out of d dimensions in representation (9) of a feasible
solution of problem (3), and permuting pi out of n elements in each dimension, where the .p1; : : : ; pk/
satisfy the above conditions. To make sure that representation matix of the permuted solution has the
largest possible number of entries different from the corresponding elements of the original matrix, we
count only those permutations that do not leave any of the pi permuted elements unchanged. The number
of such permutations, or derangements, is given by D.pi / in (40) (see, e.g., Stanley, 1986). �

Since bound (40) ignores the combinatorial structure imposed by (32), it is reasonable to expect that
it can be rather loose, especially for larger values of p, when the combinatorial effects will be most
prominent. However, for smaller values of p, pertinent to solution algorithms, the combinatorial effects
of definition (32) should be lessened, making the bound (40) tighter. These conclusions are supported by
the numerical studies of Hamming distance in MAPs that are presented next.

3.3 Numerical results

In this section we report the results of computational experiments conducted on determining the expected
Hamming distance to the global optimum (or, equivalently, to the given feasible solution) EŒH �, and the
distribution of the numbers Np of feasible solutions located at a Hamming distance p from the given

18



solution. The computational studies involved exhaustive enumeration of the feasible set of a multidimen-
sional assignment problem (3) and computing the Hamming distance (32) between each pair of feasible
solutions using the shortest augmenting path algorithm for dense LAPs (Jonker and Volgenant, 1987).
Due to the enumerative nature of this case study, only small size MAPs (d D 3; : : : ; 8, n D 2; : : : ; 5)
were examined.

Figure 1 displays the expected Hamming distance EŒH � to the global minimum solution of the MAP (3).
Interestingly, EŒH � exhibits practically linear growth when one of the parameters d or n is fixed and the
other increases. This observation supports our interpretation of EŒH � as the expected diameter of the
feasible set of (3).
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Figure 1: Expected Hamming distance from a given solution (global optimum) in multidimensional
assignment problem (3) for fixed dimensionality d or cardinality n.

Figure 2 displays typical distributions of the numberNp of feasible solutions that are located exactly at a
Hamming distance p from the given solution. In particular, the distributions of Np are generally skewed
towards larger values of p. Table 1 presents a comparison of the numerically determined values of Np
and the corresponding upper bound as given by Proposition (3). As expected, the upper bound (40) is
very loose for larger values of the Hamming distance p, when the combinatorial properties of definition
(32) are dominant, and is quite tight for smaller values of p, when the combinatorial effects of (32) are
less pronounced.
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Figure 2: Number Np of feasible solutions of a multidimensional assignment problem (3) located at a
Hamming distance p from a given solution (global optimum).

19



Table 1: Illustration of the tightness of the upper bound (40) for the number Np of feasible solutions of
MAP (d D 4, n D 4) located at a distance p from the given solution.

p 2 3 4 5 6 7 8 9 10 11 12
Bound 24 32 252 576 1896 4320 6390 12416 12744 7776 729
Np 24 32 234 576 1488 2736 4293 3552 864 0 24

4 High-quality Solution Sets in Randomized Multidimensional Assign-
ment Problems

In this section two methods will be described that can be used to obtain mathematically proven high-
quality solutions for MAPs with large cardinality, or large dimensionality. These methods utilize the
concept of index graph of the underlying hypergraph of the problem.

4.1 Random Linear MAPs of Large Cardinality

In the case when the cost ˆ of hypergraph matching is a linear function of hyperedges’ costs, i.e., for
MAPs with linear objectives, a useful tool for constructing high quality solutions for instances with large
cardinality (n� 1) is the so-called index graph. The index graph is related to the concept of line graph,
in that the vertices of the index graph represent the hyperedges of the hypergraph.

Namely, by indexing each vertex of the index graph G� D .V�; E�/ by .i1; : : : ; id / 2 f1; : : : ; ngd ,
identically to the corresponding hyperedge of Hd jn, the set of vertices V� can be partitioned into n
subsets V�

k
, also called levels, which contain vertices whose first index is equal to k:

V� D
n[
kD1

V�k ; V�k D f.k; i2; : : : ; id /
ˇ̌
i2; : : : ; id 2 f1; : : : ; ngg:

For any two vertices i; j 2 V�, an edge .i; j / exists in G�, .i; j / 2 E�, if and only if the corresponding
hyperedges of Hd jn do not have common nodes. In other words,

E� D f.i; j /
ˇ̌
i D .i1; : : : ; id /; j D .j1; : : : ; id / W ik ¤ jk; k D 1; : : : ; ng:

Then, that it is easy to see that G� has the following properties.

Lemma 2. Consider a complete, d -partite, n-uniform hypergraph Hd jn D .V; E/, where jE j D nd , and
V D

Sd
kD1 Vk such that Vk \ Vl D ;, k ¤ l and jVkj D n, k D 1; : : : ; d . Then, the index graph

G� D .V�; E�/ of Hd jn satisfies:

1. G� is n-partite, namely V� D
Sn
kD1 V�k , V�i \V

�
j D ; for i ¤ j , where each V�

k
is an independent

set in V�: for any i; j 2 V�
k

one has .i; j / … E�

2. jV�
k
j D nd�1 for each k D 1; : : : ; n

3. The set of perfect matchings in Hd jn is isomorphic to the set of n-cliques in G�, i.e., each perfect
matching in Hd jn corresponds uniquely to a (maximum) clique of size n in G�.
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Figure 3: A 3-uniform 3-partite hypergraph Hd jn and its index graph G�. The vertices of G� shaded in
grey represent a clique (or, equivalently, a perfect matching on Hd jn).

Let us denote by G�.˛n/ the induced subgraph of the index graph G� obtained by randomly selecting ˛n
vertices from each level V�

k
of G�, and also define N.˛n/ to be the number of cliques in G�.˛n/, then

based on the following lemma Krokhmal et al. (2007) one can select ˛n in such a way that G�.˛n/ is
expected to contain at least one n-clique:

Lemma 3. The subgraph G�.˛n/ is expected to contain at least one n-clique, or a perfect matching on
Hd jn (i.e., EŒN.˛n/� � 1) when ˛n is equal to

˛n D

&
nd�1

nŠ
d�1
n

'
: (41)

In the case when the cost coefficients �i1���id of MAP with linear or bottleneck objective are drawn
independently from a given probability distribution, Lemma 3 can be used to construct high quality
solutions. The approach is to create the subgraph G�min.˛n/, also called the ˛-set, from the index graph
G� of the MAP by selecting ˛n nodes with the smallest cost coefficients from each partition (level) of G�.
If the costs of the hyperedges of Hd jn, or, equivalently, vertices of G�, are identically and independently
distributed, the ˛-set is expected to contain at least one clique, which represents a perfect matching in
the hypergraph Hd jn. It should be noted that since the ˛-set is created from the nodes with the smallest
cost coefficients, if a clique exists in the ˛-set, the resulting cost of the perfect matching is expected to
be close to the optimal solution of the MAP.

Importantly, when the cardinality n of the MAP increases, the size of the subgraph G�.˛n/ or G�min.˛n/

grows only as O.n/, as evidenced by the following observation:

Lemma 4. If d is fixed and n!1, then ˛n monotonically approaches a finite limit:

˛n % ˛ WD ded�1e as n%1: (42)

Corollary 3.1. In the case of randomized MAP of large enough cardinality n � 1 the subset G�min
expected to contain a high-quality feasible solution of the MAP can simply be chosen as G�min.˛/, where
˛ is given by (42).

Observe that using the ˛-set G�min.˛/ for construction of a low-cost feasible solution to randomized MAP
with linear or bottleneck objectives may prove to be a challenging task, since it is equivalent to finding an
n-clique in an n-partite graph; moreover, the graph G�min.˛/ is only expected to contain a single n-clique
(feasible solution). The following variation of Lemma 3 allows for constructing a subgraph of G� that
contains exponentially many feasible solutions:
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Lemma 5. Consider the index graph G� of the underlying hypergraph Hd jn of a randomized MAP, and
let

ˇn D

&
2
nd�1

nŠ
d�1
n

'
: (43)

Then, the subgraph G�.ˇn/ is expected to contain 2n n-cliques, or, equivalently, perfect matching on
Hd jn.

Proof. The statement of the lemma is easy to obtain by regarding the feasible solutions of the MAP
as paths that contain exactly one vertex in each of the n “levels” V�1 ; : : : ;V�n of the index graph G�.
Namely, let us call a path connecting the vertices .1; i .1/2 ; : : : ; i

.1/

d
/ 2 V�1 , .2; i .2/2 ; : : : ; i

.2/

d
/ 2 V�2 , . . . ,

.n; i
.n/
2 ; : : : ; i

.n/

d
/ 2 V�n feasible if fi .1/

k
; i
.2/

k
; : : : ; i

.n/

k
g is a permutation of the set f1; : : : ; ng for every

k D 2; : : : ; d . Note that from the definition of the index graph G� it follows that a path is feasible if and
only if the vertices it connects form an n-clique in G�. Next, observe that a path in G� chosen at random

is feasible with the probability
�
nŠ
nn

�d�1
, since one can construct nn.d�1/ different (not necessarily

feasible) paths in G�. Then, if we randomly select ˇn vertices from each set V�
k

in such a way that out of
the .ˇn/n paths spanned by G�.ˇn/ at least 2n are feasible, the value of ˇn must satisfy:

.ˇn/
n

�
nŠ

nn

�d�1
� 2n;

from which it follows immediately that ˇn must satisfy (43). �

Corollary 3.2. If d is fixed and n!1, then ˇn monotonically approaches a finite limit:

ˇn % ˇ WD d2ed�1e as n%1:

Remark 1. Since the value of the parameter ˇn (43) is close to the double of the parameter ˛n (41),
the subgraph G�min.ˇn/, constructed from selecting ˇn nodes with the smallest cost coefficients from each
partition (level) of G� will be called the “2˛-set”, or G�.2˛/.

Following Krokhmal and Pardalos (2011), the costs of feasible solutions of randomized MAPs with
linear or bottleneck objectives that are contained in the ˛- or 2˛-sets can be shown to satisfy:

Lemma 6. Consider a randomized MAP with linear or bottleneck objectives, whose cost coefficients
are iid random variables from a continuous distribution F with a finite left endpoint of the support,
F�1.0/ > �1. Then, for a fixed d � 3 and large enough values of n, if the subset G�min.˛/ (or,
respectively, G�min.ˇ/) contains a feasible solution of the MAP, the cost Zn of this solution satisfies

.n � 1/F�1.0/C F�1
�

1

nd�1

�
� Zn � nF

�1

�
3 lnn
nd�1

�
; n� 1; (44)

in the case of MAP with linear objective (5), while in the case of MAP with bottleneck objective (7) the
cost Wn of such a solution satisfies

F�1
�

1

nd�1

�
� Wn � F

�1

�
3 lnn
nd�1

�
; n� 1: (45)
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4.2 Random MAPs of Large Dimensionality

In cases where the cardinality of the MAP is fixed, and its dimensionality is large, d � 1, the approach
described in section 4.1 based on the construction of ˛- or 2˛-subset of the index graph G� of the MAP
is not well suited, since in this case the size of G�.˛/ grows exponentially in d .

However, the index graph G� of the underlying hypergraph Hd jn of the MAP can still be utilized to
construct high-quality solutions of large-dimensionality randomized MAPs.

Let us call two matchings �i D f.i
.1/
1 ; : : : ; i

.1/

d
/; : : : ; .i

.n/
1 ; : : : ; i

.n/

d
/g and �j D

f.j
.1/
1 ; : : : ; j

.1/

d
/; : : : ; .j

.n/
1 ; : : : ; j

.n/

d
/g on the hypergraph Hd jn disjoint if

.i
.k/
1 ; : : : ; i

.k/

d
/ ¤ .j

.`/
1 ; : : : ; j

.`/

d
/ for all 1 � k; ` � n;

or, in other words, if �i and �j do not have any common hyperedges. It is easy to see that if the
cost coefficients of randomized MAPs are iid random variables, then the costs of the feasible solutions
corresponding to the disjoint matchings are also independent and identically distributed.

Next, we show how the index graph G� of the MAP can be used to construct exactly nd�1 disjoint
solutions whose costs are iid random variables. First, recalling the interpretation of feasible MAP solu-
tions as paths in the index graph G�, we observe that disjoint solutions of MAP, or, equivalently, disjoint
matchings on Hd jn are represented by disjoint paths in G� that do not have common vertices.

Note that since each level V�
k

of G� contains exactly nd�1 vertices (see Lemma 2), there may be no set
of disjoint paths with more than nd�1 elements.

On the other hand, recall that a (feasible) path G� can be described as a set of n vectors

� D f.i
.1/
1 ; : : : ; i

.1/

d
/; : : : ; .i

.n/
1 ; : : : ; i

.n/

d
/g;

such that fi .1/
k
; : : : ; i

.n/

k
g is a permutation of the set f1; : : : ; ng for each k D 1; : : : ; d . Then, for any

given vertex v.1/ D .1; i .1/2 ; : : : ; i
.1/

d
/ 2 V�1 , let us construct a feasible path containing v.1/ in the form

f.1; i
.1/
2 ; : : : ; i

.1/

d
/; .2; i

.2/
2 ; : : : ; i

.2/

d
/; : : : ; .n; i

.n/
2 � � � i

.n/

d
/g;

where for k D 2; : : : ; d and r D 2; : : : ; n

i
.r/

k
D

(
i
.r�1/

k
C 1; if i .r�1/

k
D 1; : : : ; n � 1;

1; if i .r�1/
k

D n:
(46)

In other words, fi .1/
k
; : : : ; i

.n/

k
g is a forward cyclic permutation of the set f1; : : : ; ng for any k D 2; : : : ; d .

Applying (46) to each of the nd�1 vertices .1; i .1/2 ; : : : ; i
.1/

d
/ 2 V�1 , we obtain nd�1 feasible paths

(matchings on Hd jn) that are mutually disjoint, since (46) defines a bijective mapping between any vertex
(hyperedge) .k; i .k/2 ; : : : ; i

.k/

d
/ from the set V�

k
, k D 2; : : : ; n, and the corresponding vertex (hyperedge)

v.1/ 2 V�1 .

Then, if hyperedge costs �i1��� id in the linear or bottleneck MAPs (5) and (7) are stochastically inde-
pendent, the costs ˆ.�1/; : : : ; ˆ.�nd�1/ of the nd�1 disjoint matchings �1; : : : ; �nd�1 defined by (46)
are also independent, as they do not contain any common elements �i1��� id . Given that the optimal solu-
tion costZ�

d;n
(respectively,W �

d;n
) of randomized linear (respectively, bottleneck) MAP does not exceed

the costs ˆ.�1/,. . . , ˆ.�nd�1/ of the disjoint solutions described by (46), the following bound on the
optimal cost of linear or bottleneck randomized MAP can be established:
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Lemma 7. The optimal costs Z�
d;n

, W �
d;n

of random MAPs with linear or bottleneck objectives (5), (7),
where cost coefficients are iid random variables, satisfy

Z�d;n � X
P
1Wnd�1

; W �d;n � X
max
1Wnd�1

; (47)

where X
P
i , Xmax

i .i D 1; : : : ; nd�1/ are iid random variables with distributions F
P
;max that are deter-

mined by the form of the corresponding objective function, andX1Wk denotes the minimum-order statistic
among k iid random variables.

Remark 2. Inequalities in (47) are tight: namely, in the special case of random MAPs with n D 2, all
of the nŠd�1 D 2d�1 feasible solutions are stochastically independent Grundel et al. (2007), whereby
equalities hold in (47).

As shown in Krokhmal and Pardalos (2011), the following quality guarantee on the minimum cost of the
nd�1 disjoint solutions (46) of linear and bottleneck MAPs can be established:

X
P
1Wnd�1

� nF�1
�
n�

d�1
2n

�
; Xmax

1Wnd�1
� F�1

�
n�

d�1
2n

�
; d � 1;

where F�1 is the inverse of the distribution function F of the cost coefficients �i1���id . This observation
allows for constructing high-quality solutions of randomized linear and bottleneck MAPs by searching
the set of disjoint feasible solutions as defined by (46).

4.3 Numerical Results

Sections 4.1 and 4.2 introduced two methods of solving randomized instances of MAPs by constructing
subsets (neighborhoods) of the feasible set of the problem that are guaranteed to contain high-quality
solutions whose costs approach optimality when the problem size (n ! 1, or, respectively, d ! 1)
increases. In this section we investigate the quality of solutions contained in these neighborhoods for
small- to moderate-sized problem instances, and compare the results with the optimal solutions where it
is possible.

Before proceeding with the numerical results of the study, in the next section, FINDCLIQUE, the al-
gorithm that is used to find the optimum clique in the index-graph G� or the first clique in the ˛-set or
2˛-set will be described. The results from randomly generated MAP instances for each of these two
methods are presented next.

4.3.1 Finding n-Cliques in n-Partite Graphs

In order to find cliques in G�, the ˛-set, or the 2˛-set, the branch-and-bound algorithm proposed in ? is
used. This algorithm, called FINDCLIQUE, is designed to find all n-cliques contained in an unweighted
n-partite graph.

The input to original FINDCLIQUE is an n-partite graph G.V1; : : : ; VnIE/ with the adjacency matrix
M D .mij /, and the output will be a list of all n-cliques contained in G. Nodes from G are copied
into a set called compatible nodes, denoted by C . The set C is further divided into n partitions,
each denoted by Ci that are initialized such that they contain nodes from partite Vi , i D f1; : : : ; ng.
FINDCLIQUE also maintains two other sets, namely, current clique, denoted by Q and erased
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nodes, denoted by E. The set Q holds a set of nodes that are pairwise adjacent and construct a clique.
The erased node set, E, is furthered partitioned into n sets, denoted by Ei , that are initialized as
empty. At each step of the algorithm, Ei will contain the nodes that are not adjacent to the i th node
added to Q.

The branch-and-bound tree has n levels, and FINDCLIQUE searches for n-cliques in the tree in a depth-
first fashion. At level t of the branch of bound algorithm, the index of the smallest partition in C , � D
arg min

i
fjCi j

ˇ̌
i … Vg will be detected, and C� will be marked as visited by including � into V fV[�g,

where V is the list of partitions that have a node in Q. Then, a node q from C� is selected at random and
added to Q. If jQj D n, an n-clique is found. Otherwise, C will be updated; every partition Ci where
i … V will be searched for nodes cij , .j D 1; : : : ; jCi j/ that are not adjacent to q, i.e. mq;cij D 0. Any
such node will be removed from Ci and will be transferred to Et . Note that in contrast to C , nodes in
different levels of E will not necessarily be from the same partite of G. Decision regarding backtracking
is made after C is updated. It is obvious that in an n-partite graph the following will hold:

!.G/ � n; (48)

where !.G/ is the size of a maximum clique in G. In other words, the size of any maximum clique
cannot be larger than the number of partites, in that the maximum clique can only contain at most 1
node from each partite of G. If after updating, there is any Ci … V with jCi j D 0, adding qi to Q will
not result in a clique of size n, since the condition in (48) changes into strict inequality. In such cases,
q is removed from Q, nodes from Et will be transferred back to their respective partitions in C , and
FINDCLIQUE will try to add another node from C� that is not already branched on, toQ. If such a node
does not exist, the list of visited partitions will be updated (V  Vn� ), and FINDCLIQUE backtracks
to the previous level of the branch-and-bound tree. If the backtracking condition is not met and q is
promising, FINDCLIQUE will go one level deeper in the tree, finds the next smallest partition in the
updated C and tries to add a new node to Q.

When solving the clique problem in the ˛-set or 2˛-set, since the objective is to find the first n-clique
regardless of its cost, FINDCLIQUE can be used without any modifications, and the weights of the nodes
in G�min.˛/ or G�min.2˛/ will be ignored. However, when the optimal clique with the smallest cost in G�
is sought, some modifications in FINDCLIQUE are necessary to enable it to deal with weighted graphs.
The simplest way to adjust FINDCLIQUE is to compute the weight of the n-cliques as they are found,
and report the clique with the smallest cost as the output of the algorithm. This is the method that is
used in the experimental studies whenever the optimal solution is desired. However, to obtain a more
efficient algorithm, it is possible to calculate the weight of the partial clique contained inQ in every step
of the algorithm and fathom subproblems for which WQ � WQ� , where WQ and WQ� are the cost of
the partial clique in Q and the cost of the best clique found so far by the algorithm respectively. Further
improvement can be achieved by sorting the nodes in Ci , i D 1; : : : ; n, based on their cost coefficients,
and each time select the untraversed node with the smallest node as the next node to be added to Q
(as opposed to randomly selecting a node, which does not change the overall computational time in the
unweighted graph if a list of all n-cliques is desired). This enables us to compute a lower bound on the
cost of the maximum clique that the nodes in Q may lead to as follows:

LBQ D WQ C
X
i…V

wmin
i ; (49)

where wmin
i is the weight of the node with the smallest cost coefficient in Ci . Any subproblem with

LBQ � WQ� will be fathomed.
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4.3.2 Random Linear MAPs of Large Cardinality

To demonstrate the performance of the method described in section 4.1, random MAPs with fixed di-
mensionality d D 3 and different values of cardinality n are generated. The cost coefficients �i1��� id
are randomly drawn from the uniform U Œ0; 1� distribution. Three sets of problems are solved for this
case: (i) n D 3; : : : ; 8 with d D 3, solved for optimality, and the first clique in the ˛- and 2˛-sets,
(ii) n D 10; 15; : : : ; 45, with d D 3, solved for the first clique in the ˛- and 2˛-sets, and finally (iii)
n D 50; 55; : : : ; 80, with d D 3, solved for the first clique in the 2˛-set. For each value of n, 25 in-
stances are generated and solved by modified FINDCLIQUE for the optimum clique or FINDCLIQUE
whenever the first clique in the problem is desired. Algorithm is terminated if the computational time
needed to solve an instance exceeds 1 hour.

In the first group, (i), instances of MAP that admit solution to optimality in a reasonable time were solved.
The results from this subset are used to determine the applicability of Corollary 3.1 and bounds (44) and
(45) for relatively small values of n. Table 2 summarizes the average values for the cost of the clique and
computational time needed for MAPs with the linear sum objective function for the instances in group (i).
The first column, n, is the cardinality of the problem. The columns under the heading “Exact” contain
the values related to the optimal clique in G�. The columns under the heading “G�min.˛n/” represent
the values obtained from solving the ˛-set for the first clique, and those under the heading “G�min.2˛/”
represent the values obtained from solving the 2˛-set for the first clique. For each of these multicolumns,
T denotes the average computational time in seconds,Z is the average cost of the cliques, jV j is the order
of the graph or induced subgraph in G�, G�min.˛/, or G�min.2˛/, and 9 CLQ shows the percentage of the
problems for which the ˛-set or 2˛-set, respectively, contains a clique. This value is 100% for the exact
method. There was no instances in group (i) for which the computational time exceeded 1 hour.

It is clear that using ˛-set or 2˛-set enables us to obtain a high-quality solution in a much shorter time by
merely searching a significantly smaller part of the index graph G�. Based on the values for Z, the cost
of the clique found in ˛-set or 2˛-set are consistently converging to that of the optimal clique and they
provide tight upper bounds for the optimum cost. Additionally, as is shown in the jV j column, significant
reduction in the size of the graph can be obtained if ˛-set or 2˛-set are used.

Table 3 contains the corresponding results for the case of a random MAP with bottleneck objective. In
this table, W represents the value for the cost of the optimal clique or the first clique found in ˛- or
2˛-set. Figure 4(a) shows how the cost of an optimum clique compares to the cost of the clique found
in ˛-set and 2˛-set. Clearly, the cost of optimal clique approaches 0 for both linear sum and linear
bottleneck MAPs. Figure 4(b) demonstrates the computational time for instances in group (i).

The advantage of using ˛-set over 2˛-set is that the quality of the detected clique is expected to be higher.
On average, however, a clique in 2˛-set is found in a shorter time than in ˛-set.

The second group of problems, (ii), comprises instances that cannot be solved to optimality within 1
hour. The range of n for this group is such that the first clique in the ˛-set is expected to be found within
1 hour. Tables 4 and 5 summarize the results obtained for this group. Instances with n D 45 were the
largest problems in this group for which ˛-set could be solved within 1 hour. As it is expected, the
2˛-set can be solved quickly in a matter of seconds where the equivalent problem for ˛-set requires a
significantly longer computational time. However, the quality of the solutions found for ˛-set is higher
than the quality for solutions in 2˛-set. Nonetheless, using 2˛-set increases the odds of finding a clique,
as based on lemma 5, 2˛-set is expected to contain an exponential number of cliques. It is obvious
from the 9 CLQ column that not all of the instances in ˛-set contain at least a clique, whereas 100%
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Table 2: Comparison of the computational time and cost for the optimum clique and the first clique found
in G�.˛/ and G�.2˛/ in random MAPs with linear sum objective functions for instances in group (i).

Exact G�min.˛/ G�min.2˛/

n T �n;3 Z�n;3 jV j 9 CLQ TGmin.˛/ ZGmin.˛/ jV j 9 CLQ TGmin.2˛/ ZGmin.2˛/ jV j 9 CLQ
3 0.02 0.604 3�26 100 0.04 0.609 3�3 76 0.03 0.773 3�6 100
4 0.01 0.458 4�63 100 0.03 0.514 4�4 88 0.03 0.635 4�7 100
5 0.02 0.371 5�124 100 0.04 0.399 5�4 72 0.03 0.571 5�8 100
6 0.31 0.374 6�215 100 0.04 0.452 6�5 92 0.01 0.524 6�9 100
7 14.83 0.329 7�342 100 0.04 0.392 7�5 80 0.05 0.47 7�9 100
8 937.67 0.274 8�511 100 0.05 0.329 8�5 72 0.04 0.478 8�10 100

Table 3: Comparison of the computational time and cost for the optimum clique and the first clique found
in G�.˛/ and G�.2˛/ in random MAPs with linear bottleneck objective functions for instances in group
(i).

Exact G�min.˛/ G�min.2˛/

n T �n;3 W �n;3 jV j 9 CLQ TGmin.˛/ WGmin.˛/ jV j 9 CLQ TGmin.2˛/ WGmin.2˛/ jV j 9 CLQ
3 0.01 0.321 3�26 100 0.03 0.324 3�3 76 0.04 0.439 3�6 100
4 0.01 0.205 4�63 100 0.03 0.241 4�4 88 0.03 0.311 4�7 100
5 0.01 0.151 5�124 100 0.02 0.17 5�4 72 0.03 0.27 5�8 100
6 0.3 0.124 6�215 100 0.04 0.166 6�5 92 0.04 0.219 6�9 100
7 14.96 0.098 7�342 100 0.04 0.131 7�5 80 0.04 0.163 7�9 100
8 956.6 0.075 8�511 100 0.04 0.092 8�5 72 0.04 0.157 8�10 100

of the instances in 2˛-set contain one that can be found within 1 hour. Column Timeout represents the
percentage of the problems that could not be solved within the allocated 1 hour time limit. Out of 25
instances solved for n D 45, only 4 (16%) could not be solved in 1 hour. Out of the 21 remaining
instances, 20 instances contained a clique, and only 1 did not have a clique. The behavior of the average
cost values for the problems solved in this group are depicted in Figure 5.

Finally, the third group, (iii), includes instances for which the cardinality of the problem prevents the
˛-set from being solved within 1 hour. Thus, for this set, only the 2˛-set is used. The instances of this
group were solved with the parameter values n D 50; 55; : : : ; 80 and d D 3. Tables 6 and 7 summarize
the corresponding results. When the size of the problem n � 55, some instances of problems become
impossible to solve within 1 hour time limit. The average cost for the instances that are solved keeps the
usual trend and converges to 0 as n grows. The largest problems attempted to be solved in this group are

Table 4: Comparison of the computational time and cost for the first clique found in G�.˛/ and G�.2˛/
in random MAPs with linear sum objective functions for instances in group (ii).

G�min.˛/ G�min.2˛/

n TGmin.˛/ ZGmin.˛/ jV j 9 CLQ Timeout TGmin.2˛/ ZGmin.2˛/ jV j 9 CLQ Timeout
10 0.05 0.266 10�5 60 - 0.05 0.37 10�10 100 -
15 0.06 0.228 15�6 76 - 0.06 0.313 15�11 100 -
20 0.08 0.165 20�6 56 - 0.07 0.246 20�12 100 -
25 0.15 0.147 25�7 80 - 0.08 0.2 25�13 100 -
30 0.89 0.134 30�7 92 - 0.09 0.171 30�13 100 -
35 8.54 0.11 35�7 88 - 0.14 0.151 35�13 100 -
40 100.85 0.097 40�7 92 - 0.46 0.131 40�13 100 -
45 405.16 0.085 45�7 80 16 1.09 0.122 45�14 100 -
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(a) (b)

Figure 4: Solution costs (a) and computational time (b) in random MAPs with linear sum and linear
bottleneck objective functions for instances in group (i).

Table 5: Comparison of the computational time and cost for the first clique found in G�.˛/ and G�.2˛/
in random MAPs with linear bottleneck objective functions for instances in group (ii).

G�min.˛/ G�min.2˛/

n TGmin.˛/ WGmin.˛/ jV j 9 CLQ Timeout TGmin.2˛/ WGmin.2˛/ jV j 9 CLQ Timeout
10 0.04 0.065 10�5 60 - 0.02 0.098 10�10 100 -
15 0.04 0.037 15�6 76 - 0.02 0.056 15�11 100 -
20 0.05 0.023 20�6 56 - 0.04 0.036 20�12 100 -
25 0.1 0.017 25�7 80 - 0.08 0.025 25�13 100 -
30 0.87 0.012 30�7 92 - 0.1 0.019 30�13 100 -
35 8.53 0.009 35�7 88 - 0.15 0.015 35�13 100 -
40 100.99 0.007 40�7 92 - 0.46 0.011 40�13 100 -
45 403.52 0.006 45�7 80 16 1.09 0.009 45�14 100 -

MAPs with n D 80. Out of 25 instances of this size, only 4 could be solved within 1 hour. Figure 5(a)
the average values of solution cost and computational time for the instances of both linear sum and linear
bottleneck MAPs. Note that as the size of the problem increases, the reduction in the size of problem
achieved from using ˛-set or 2˛-set becomes significantly larger. For instance, in MAP with n D 80 and
d D 3, the 2˛-set has 80 � 14 nodes, while the complete index graph will have 80 � 802 nodes.

4.3.3 Random MAPs of Large Dimensionality

The second set of problem instances includes MAPs that are solved by the heuristic method explained in
section 4.2. Problems in this set have the cardinality n D 2; : : : ; 5 and dimensionality in the range d D
2; : : : ; Ndn, where Ndn is the largest value for d for which an MAP with cardinality n can be solved within
1 hour using the heuristic method. For each pair of .n; d/, 25 instances of MAP with cost coefficients
randomly drawn from the uniformU Œ0; 1� distribution are generated. Generated instances are then solved
by the modified FINDCLIQUE for the optimal clique (when possible) and the optimal costs are compared
with the costs obtained from the heuristic method. The result of the heuristic method for instances with
n D 2 is optimal, and the heuristic checks all the 2d�1 solutions of the MAP. Thus, using the modified
FINDCLIQUE to find the optimum clique is not necessary.
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Table 6: Computational time and cost for the first clique found in G�.2˛/ in random MAPs with linear
sum objective functions for instances in group (iii).

G�min.2˛/

n TGmin.2˛/ ZGmin.2˛/ jV j 9 CLQ Timeout
50 1.56 0.11 50�14 100 -
55 52.29 0.099 55�14 96 4
60 189.9 0.091 60�14 92 8
65 568.9 0.085 65�14 96 4
70 919.79 0.078 70�14 64 36
75 1556.89 0.075 75�14 40 60
80 1641.26 0.07 80�14 16 84

Table 7: Computational time and cost for the first clique found in G�.2˛/ in random MAPs with linear
bottleneck objective functions for instances in group (iii).

G�min.2˛/

n TGmin.2˛/ WGmin.2˛/ jV j 9 CLQ Timeout
50 1.56 0.008 50�14 100 -
55 52.19 0.006 55�14 96 4
60 190.6 0.005 60�14 92 8
65 566.71 0.005 65�14 96 4
70 920.44 0.004 70�14 64 36
75 1552.74 0.004 75�14 40 60
80 1631.89 0.003 80�14 16 84

Figure 6 demonstrates the cost convergence in instances with n D 2; 3; 4; 5 for both linear sum and
linear bottleneck MAPs. Figure 6(a) demonstrates the cost convergence in MAPs with n D 2 and
d D 2; : : : ; 27. Recall that due to Remark 2, for cases with n D 2 the heuristic provides the optimal
solution. The heuristic method provides high quality solutions that are consistently converging to the
optimal solution for all cases and the average value of the obtained costs from the heuristics approaches
0. Memory limitations, as opposed to computational time, were the restrictive factor for solving larger
instances as the computational time for the problems of this set never exceeded 700 seconds.

Figure 7 demonstrates the computational time for the optimal method as well as the heuristic method in
instances with n D 2; 3; 4; 5 for both linear sum and linear bottleneck MAPs. The computational time
has an exponential trend as the number of solutions for the MAP, or the number of solutions checked by
the heuristic grow in an exponential manner. However, the heuristic method is able to find high quality
solutions in significantly shorter time.

5 On  -cliques in random graphs

A complete subset, or a clique in a simple undirected graph G D .V;E/ is a subset Q � V of vertices
that are pairwise adjacent, i.e., for any i; j 2 Q there exists an edge .i; j / 2 E. A clique Q that cannot
be increased by adding new vertices from V nQ is called maximal; a clique of the largest size is called
the maximum clique. In the present endeavor we are concerned with the properties and behavior of a
certain type of clique relaxation, namely the quasi-clique, or  -clique Abello et al. (2002).

Definition 1 (quasi-clique). Let G D .V;E/ be a simple undirected graph, and Q � V be a subset of
its vertices. The (induced) subgraph GŒQ� is called a  -clique for a given fixed  2 .0; 1�, if the ratio of
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(a) (b)

Figure 5: Comparison of the cost (a) and computational time (b) for MAPs with linear sum and linear
bottleneck objective functions for group (ii) and (iii).

the number of edges in GŒQ� to the maximum possible number of edges among vertices in Q is at least
 :

jE.Q/j � 

 
jQj

2

!
:

Note that the case of  D 0 would be trivial, as any graph is a 0-clique. A complete graph is a 1-clique,
hence  -clique represents a density-based relaxation of the clique, as compared to degree– and diameter-
based clique relaxations such as k-plex and k-club (Balasundaram et al., 2011; Alba, 1973; Mokken,
1979; Wasserman and Faust, 1994; Scott, 2007). Similarly to maximum cliques, a  -clique with the
largest number of vertices is called the maximum  -clique.

In this work, we investigate the asymptotical behavior of  -cliques in large-scale random graphs, and
develop a compact linear mixed-integer programming formulation for identifying the largest  -clique in
a given network.

In particular, we employ a popular G.n; p/ model of random graphs, originated by Erdös Erdös (1947),
which denotes a graph on n vertices, such that an edge between any two vertices exists with a probability
p 2 .0; 1�, independently from other edges. The G.n; p/ model is related to the Erdös–Rényi G.n;M/

model of random graphs, in which graphs with n vertices and M edges are uniformly equiprobable with

probability
�
.n2/
M

��1
. For the G.n; p/ model yields graph instances with a rather “uniform” structure, as

opposed to, say, power-law graphs, it is sometimes called a uniform random graph model Chung et al.
(2001), a terminology that will also be used in this paper.

Random graphs and related structures, such maximum cliques in random graphs, have been studied
intensively in last decades Erdös and Rényi (1960); Bollobás and Erdös (1976); Bollobás (2001). One
of the earliest works on the asymptotical behavior of maximum clique in uniform random graphs is
due to Matula Matula (1970), who showed that the maximum clique size has a strong peak around
2 lnn= ln.1=p/. Grimmett and McDiarmid Grimmett and McDiarmid (1976) proved that as n!1 the
maximum clique size in a uniform random graph G.n; p/ is equal to 2 lnn= ln.1=p/C O.ln lnn/ with
probability one.

In Section 2, we present a generalization of this result for the case of maximum  -cliques. Furthermore,
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(c) (d)

Figure 6: Comparison of the cost obtained from the heuristic method with the optimum cost in MAPs
with linear sum and linear bottleneck objective functions with (a) n D 2, (b) n D 3, (c) n D 4, and (d)
n D 5

we demonstrate that the size of maximum  -clique in G.n; p/ undergoes a phase transition when the
value of p is varied in the vicinity of the (fixed) value  2 .0; 1/, manifested in a sudden and drastic
change of size of the maximum  -clique inG.n; p/ relative to the size of the graph itself. The phenomena
of phase transition in random structures are well known in many fields of science and engineering; some
of the relevant works include Bollobás et al. (2005, 2007); Łuczak (1996); Łuczak and Łuczak (2006);
Łuczak (1990); Łuczak et al. (1994); Frank and Martel (1995); Krishnamachari et al. (2001).

In Section 3, we develop a linear mixed integer programming (MIP) formulation for the problem of
identifying the maximum clique problem in a given graph. In comparison to traditional formulations
existing in the literature for, e.g., maximum clique problem, and involving either a non-convex quadratic
constraints or a number of linear constraints that is quadratic in the size of the graph, our formulation is
linear and employs number of variables and constraints that is linear in the size of the graph.

5.1 Asymptotic behavior of  -cliques in uniform random graphs

Define N 

k
as the (random) number of  -cliques of size k in G.n; p/. Noting that there are

�
n
k

�
different

subgraphs of size k in this graph, let I j be the indicator variable such that I j D 1 if the j -th subgraph
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(a) (b)

(c) (d)

Figure 7: Comparison of the computational time in logarithmic scale needed for the optimal method and
the heuristic method in MAPs with linear sum and linear bottleneck objective functions with (a) n D 2,
(b) n D 3, (c) n D 4, and (d) n D 5

of size k is a  -clique, j D 1; : : : ;
�
n
k

�
, and I j D 0 otherwise, which allows us to express N 

n as

N


k
D

.nk/X
jD1

I

j : (50)

Obviously, the unconditional probabilities PfI j D 1g that any subgraph of size k is a  -clique are equal,
whence the expected number of  -cliques of size k in G.n; p/ is given by

E
�
N


k

�
D

 
n

k

!
Pfa subgraph of size k in G is a  -cliqueg

D

 
n

k

! .k2/X
mD

l
.k2/

m
 �
k
2

�
m

!
pm.1 � p/.

k
2/�m

D

 
n

k

!h
1 � Bin

��

�
k
2

�˘
I
�
k
2

�
; p
�i
;

(51)
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where Bin.kIn; p/ is the c.d.f. of the binomial distribution. As it will be seen, the integer k D k

n such

that

E
�
N


k

n

�
D 1 (52)

for large values of n plays a central role in the sequel. The next proposition takes a first step in evaluating
k

n .

Proposition 4. If p <  , the integer k D k

n that satisfies E

�
N


k

n

�
D 1 increases with n in such a way

that kn D o.n/, n� 1.

Proof. From expression (51) it is evident that k D k

n cannot be bounded for large values of n, since in

that case the right-hand side of (51) would be equal asymptotically to O.nk/. To verify that kn D o.n/,
we construct an upper bound on the right hand side of equation (51). Using Stirling’s approximation, the
binomial coefficient in (51) can be bounded as 

n

k

!
�

�en
k

�k
: (53)

To bound the summation term in (51), we use Chernoff’s bound for the tail of the binomial distribution
Erdös and Spencer (1974):

nX
iDm

 
n

i

!
pi .1 � p/n�i �

�n � np
n �m

�n�m �np
m

�m
;

where m � np. In our case n D
�
k
2

�
; m D

l

�
k
2

�m
(for simplicity, we use m D 

�
k
2

�
), and since p <  ,

then m � np; thus, the requirement on m is valid. Thus,

.k2/X
iD
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D

D

"�
1 � p

1 � 

�1� �p


�#.k2/
: (54)

Combining the upper bounds in (53) and (54), we have that if k D kn satisfies EŒN 

k
� D 1, whereby the

following must hold for large enough values of n:

1 �
�en
k

�k "�1 � p
1 � 

�1� �p


�#.k2/
: (55)

Taking logarithm of the right hand side of the above inequality and dividing by k2, we obtain

1

k
C

lnn
k
�

ln k
k
C
1

2

�
1 �

1

k

�
ln c;

where the constant c has the form c D
�
1�p
1�

�1� �
p


�
. It is easy to see from the inequality for

arithmetic and geometric means that c 2 .0; 1/ for 0 < p <  < 1. Then, if k grows with n such that
k

lnn D o.1/, the above expression becomes negative for sufficiently large n, thereby contradicting the
constructed upper bound (55). This implies that kn D o.n/, which proves the proposition. �
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Proposition 5. If p <  , the integer k D kn that satisfies the equality EŒN 

k

n
� D 1, is given by

kn D
2

ln
��


p

� �
1�
1�p

�1�� lnnCO.ln lnn/; n� 1: (56)

In establishing Proposition 5 we rely on the following result due to McKay McKay (1989).

Theorem 4 (McKay McKay (1989)). Let p 2 .0; 1/ be fixed, and p� � � � � for some � � 1. Define
x D ��p�

�
, where � D

p
�p.1 � p/. Then

�X
iD�

 
�

i

!
pi .1 � p/��i D �

 
� � 1

� � 1

!
p��1.1 � p/���

1 �ˆ.x/

�.x/
exp

˚
�.�; �; p/=�

	
; (57)

where
0 � �.�; �; p/ � minf

p
�=8; x�1g;

and ˆ.x/ and �.x/ are the cumulative and probability density functions of the standard normal distri-
bution, respectively.

Proof of Proposition 5. Using the notations of Theorem 1, let

� D
�
k
2

�
; � D �; � D

p
p.1 � p/�; x D

 � pp
p.1 � p/

�1=2;

where we note that � � d�e > p� for large enough �, then the last term in (57) satisfies

exp
˚
�.�; �; p/=�

	
D expfO.��1/g D 1CO.��1/; n!1:

From the fact that x increases with n (cf. Proposition 4), it follows that

1 �ˆ.x/

�.x/
D
1

x
CO.x�3/ D

p
p.1 � p/

 � p
��1=2

�
1CO.��1/

�
; n!1;

where the well-known expansion

1 �ˆ.t/ D
1
p
2�
e�t

2=2
�
t�1 CO.t�3/

�
; t !1;

was used. Invoking Stirling’s expansion for �.´/,

�.´/ D

r
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´
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�
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; ´!1;

we obtain  
� � 1
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1
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:
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Thus, finally, the tail of the binomial distribution in (51) can be estimated as
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where � D
�
k
2

�
. Consequently, equation (51) can asymptotically be written as 
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Taking the logarithm of both sides of the last equality, we obtain

�
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k C 1
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where

c1 D
1

2�

1 � p
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1 � 
; c2 D
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�1�
:

Taking into account that
1

2
ln

 
k

2

!
D ln k � ln

p
2CO.k�1/;

equation (59) can be written as
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2
ln c2 � k ln k C k.lnnC 1 � 1

2
ln c2/ � 3

2
ln k C ln

p
2c1 D O
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;
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��
:

To obtain the main term of the asymptotical approximation of the solution of the last equation, let us
restate it in the form

k2

(
1

2
ln c2 C

lnn
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ln k
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3 ln k
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In view of the fact that k D o.n/ due to Proposition 4, the above expression can be further rewritten as

1

2
ln c2 C

lnn
k
C o

�
lnn
k

�
D o.1/;

whence we have that
k D

2 lnn
ln c�12

C �.n/; where �.n/ D o.lnn/:

To determine the order of the term �.n/, we restate the last equation as

k

2
ln c2 C lnn � ln k D O.1/:

Writing down the expression for k D kn in the form

kn D
2 lnn
ln c�12

C �.n/;

and substituting it in the last equation, we obtain that �.n/ D O.ln lnn/, which furnishes the statement
of the proposition. �
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Next, we demonstrate that the number kn (56), which solves the equation E
�
N


k

�
D 1, with probability

1 represents an upper bound on the size of the maximum quasi-clique in a uniform random graph when
n!1. For this, we need the following property of  -cliques.

Proposition 6. If graph G D .V;E/, where jV j D n, is a  -clique for some fixed  2 .0; 1�, then for
any s < n there exists a  -clique of size s in G.

Proof. For  D 1, this property is trivial. In the case of  2 .0; 1/, it suffices to show that the statement
of the proposition holds for s D n � 1. Since G D .V;E/ is a  -clique, then

jEj � 

 
n

2

!
:

Assume that there exists a vertex i 2 V with degG.i/ � .n � 1/. Let Vi D V n i ; then the induced
subgraph GŒVi � D .Vi ; Ei / is also a  -clique, since

jEi j � 

 
n

2

!
� .n � 1/ D 

 
n � 1

2

!
:

If there is no such a vertex, i.e., degG.i/ > .n � 1/ for all i 2 V , then let j D arg mini2V degG.i/ be
the vertex of G with the smallest degree, degG.j / D m > .n� 1/. As before, denote Vj D V n j , and
observe that the cardinality of the set of edges Ej of the induced subgraph GŒVj � D .Vj ; Ej / satisfies

jEj j D
1

2

X
i2Vj W .i;j /2E

degGŒVj �.i/C
1

2

X
i2Vj W .i;j /…E

degGŒVj �.i/

�
1

2
m.m � 1/C

1

2
.n �m � 1/m

D
1

2
.n � 2/m > 

 
n � 1

2

!
;

thus verifying the statement of the proposition. �

Proposition 7. Let M 
n denote the (random) size of the maximum  -clique in a uniform random graph

G.n; p/. If 0 < p <  � 1, then

lim sup
n!1

M

n

lnn
�

2

ln 1=p�
a. s.; (60)

where p� D
�
p



� �1 � p
1 � 

�1�
.

Proof. First, observe that

PfM 
n � kg D PfN 

k
� 1g � EŒN 

k
�; (61)
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where the equality is due to Proposition 6. Define a sequence kn D
2

ln 1=p�
lnn, n � 1; then, from

expression (51) for EŒN 
n �, one obtains by following the steps in Proposition 5 that for sufficiently large

values of n

PfM 
n � kng �

 
n

kn

!
.p�/.

kn
2 / �

nkn

�.kn C 1/
.p�/.

kn
2 /: (62)

From the definition of kn it follows that the term

nkn�1.p�/.
kn
2 /

is bounded for large enough n, whence the sought probability can be subsequently bounded as

PfM 
n � kng �

n

�.kn C 1/
�
nekn

kn
kn
:

Again recalling the definition of kn, we note that

n2
nekn

k
kn
n

D
exp

˚
kn.1C

3
2

ln 1=p�/
	

k
kn
n

! 0; n!1; (63)

which implies that PfM 
n � kng D o.n

�2/ for n� 1, whereby the upper bound (60) on the size of the
maximum  -clique holds almost surely by virtue of the Borel-Cantelli lemma. �

The next corollary shows that in sufficiently large random graphs G.n; p/, the size of the maximum
 -clique is almost surely above a certain value of the order of lnn. It uses a well known fact, established
by Grimmett and McDiarmid Grimmett and McDiarmid (1976), that the size of the maximum clique in
a uniform random graph G.n; p/ converges almost surely to 2 lnn= lnp�1. Note that M 1

n represents the
size of the maximum clique ( D 1) in a uniform random graph G.n; p/. Observe also that, according
to (56),

lim
!1�0

kn D
2 lnn
ln 1=p

CO.ln lnn/;

which corresponds to the well-known expression for the size of the maximum clique in uniform random
graphs Bollobás and Erdös (1976); Grimmett and McDiarmid (1976). This allows us to define k1n as the
limiting value of kn above.

Corollary 4.1. If 0 < p <  � 1, then the size M 
n of the maximum  -clique in a uniform random

graph G.n; p/ satisfies

2

ln 1=p
� lim inf

n!1

M

n

lnn
� lim sup

n!1

M

n

lnn
�

2

ln
��


p

� �
1�
1�p

�1�� a. s. (64)

where kn is given by (56).

Proof. This follows immediately from Proposition 7, and the observation that, for any  < 1, the size of
the maximum  -clique inG.n; p/ always greater than the size of the maximum clique in the same graph,
i.e.,

PfM 1
n �M


n g D 1;  < 1:
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Also note that the relations 0 < p <  < 1 imply that�


p

1 � p

1 � 

�1�
> 1 > ;

from which one infers the inequality �
p



� �1 � p
1 � 

�1�
> p;

verifying that inequality for the lower and upper bounds on M 
n = lnn in (64) always holds, given the

above assumptions on the values of p and  . �

Remark 3. From Fatou’s lemma it follows that bounds (64) on the maximum  -clique size M 
n , which

hold with probability 1, also hold for the average maximum  -clique size, EŒM 
n �:

2

ln 1=p
� lim inf

n!1

EŒM 
n �

lnn
� lim sup

n!1

EŒM 
n �

lnn
�

2

ln
��


p

� �
1�
1�p

�1�� : (65)

In such a way, we have established that for any fixed  > p the asymptotic size of the maximum  -clique
is of the order of lnn. Intuitively, when  � p, the entire graph G.n; p/ becomes a  -clique, thus the
size of the maximum  -clique has the order of n. Therefore, the natural question arising here is what
happens when  is fixed and p approaches  . We show that there is a first order phase transition in the
asymptotic behavior of the order of magnitude of the maximum  -clique in the point  D p.

Proposition 8. If M 
n is the size of the maximum  -clique in a uniform random graph G.n; p/ for some

fixed  2 .0; 1/, then with high probability (w.h.p.)

lim
p%

lim
n!1

M

n

n
D 0; (66a)

but

lim
p&

lim
n!1

M

n

n
D 1: (66b)

Proof. The first limiting case follows from Proposition 7, since we proved that for any fixed  > p with
probability 1

lim
n!1

M

n

n
D 0:

To prove the equality in (66b), let Xij be a Bernoulli random variable which is equal to 1 if there exists
an edge .i; j / in the uniform random graph G.n; p/. Then,

P fM 
n D ng D P

8<:X
.i;j /

Xij � 

 
n

2

!9=; D P

8̂<̂
:
P
.i;j /

Xij�
n
2

� � 

9>=>; :
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From the weak law of large numbers it follows that for any fixed " > 0,

P

8̂<̂
:
ˇ̌̌̌
ˇ̌̌
P
.i;j /

Xij�
n
2

� � p

ˇ̌̌̌
ˇ̌̌ � "

9>=>;! 1; n!1 :

Letting " D p �  , we obtain

P

8̂<̂
:
P
.i;j /

Xij�
n
2

� � 

9>=>; D P

8̂<̂
:p �

P
.i;j /

Xij�
n
2

� � "

9>=>;
� P

8̂<̂
:
ˇ̌̌̌
ˇ̌̌p �

P
.i;j /

Xij�
n
2

�
ˇ̌̌̌
ˇ̌̌ � "

9>=>;! 1; n!1:

Therefore,
PfM 

n D ng ! 1; n!1;

which ends the proof of the proposition. �

Remark 4. The phase transition, a phenomenon of a drastic change in some property of a random
structure over a small change in the structure’s parameters, is well known in the literature. With respect
to random graphs, the limiting probability of a graph’s property changing from 0 to 1 or vice versa is
well known for monotone and first order graph properties Alon and Spencer (2000). Recall that property
Q is monotone increasing (respectively, decreasing) if from A � B (resp., B � A) and A 2 Q it
follows that B 2 Q. The first order graph properties are ones that can be finitely described in a first order
language, i.e., language consisting of variables that represent graph vertices, equality .D/ and adjacency
.�/ relations, Boolean symbols _, ^, :, and the universal and existential quantifications 8, 9. Note that
first order properties are not necessarily monotone and vice versa; for instance, the increasing property
“graph is connected” cannot be expressed in first order language Janson et al. (2000). Then, limiting
relations similar to (66) that concern random graphs with first order properties Q are known as zero-one
laws Alon and Spencer (2000); Janson et al. (2000):

lim
n!1

PfG.n; p/ has Qg D 0 or 1;

where the probability is monotone if Q is monotone.

In this context, it is worth noting that the property that “graph is a  -clique” in neither monotone, nor
first order property, hence the phase transition in the relative size of  -clique in uniform random graphs
(66) may not be obtained directly from the general zero-one laws relations.

5.2 Linear mixed-integer formulations of the maximum  -clique problem

In this section we develop linear mixed-integer formulations of the maximum  -clique problem. To the
best of our knowledge, the formulation that we present at the end of this section is the most compact
linear formulation, of the size of O.n/, where n is the number of vertices in the graph.

Consider a graph G D .V;E/ with n vertices and an adjacency matrix A, and suppose we select some
subgraphGs ofG. In order to verify whetherGs is a  -clique, we introduce the binary vector of variables
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x 2 f0; 1gn, where xi D 1 if vertex i belongs toGs , and xi D 0 otherwise. The subgraphGs is a  -clique
if the cardinality of its set of edges is at least



 
jGsj

2

!
D
1

2


nX
iD1

xi

 
nX
iD1

xi � 1

!
D
1

2


0@ nX
i;jD1

xjxi �

nX
iD1

xi

1A
D
1

2


0B@ nX
i;jD1
i¤j

xjxi C

nX
iD1

x2i �

nX
iD1

xi

1CA
D
1

2


nX
i;jD1
i¤j

xjxi ;

where the last equality is due to x2i D xi . The number of edges in the subgraph Gs can be calculated as

1

2
xtAx D

nX
i;jD1
i¤j

aijxjxi :

Therefore, the problem of finding the maximum  -clique in the graph G can be formulated as follows:

max
x2f0;1gn

nX
iD1

xi

s. t.
nX

i;jD1
i¤j

aijxjxi � 

nX
i;jD1
i¤j

xjxi :

(67)

This is a 0–1 integer programming (IP) problem with a linear objective and a nonconvex quadratic con-
straint. A linearization of this problem can be performed at the expense of introducing additional vari-
ables and constraints. To this end, define wij D xixj for every pair of nodes .i; j /. Note that only
n.n � 1/=2 � n of such variables are required since wij D wj i . Also, the constraint wij D xixj is
equivalent to

wij � xi ;

wij � xj ;

wij � xi C xj � 1:

Now, we can reformulate (67) as a linear problem

max
nX
iD1

xi (68a)

s. t.
nX

i;jD1
i¤j

aijwij � 

nX
i;jD1
i¤j

wij ; (68b)

wij � xi ; i; j D 1; : : : ; n; (68c)

wij � xj ; i; j D 1; : : : ; n; (68d)

wij � xi C xj � 1; i; j D 1; : : : ; n; (68e)

xi ; wij 2 f0; 1g; i; j D 1; : : : ; n: (68f)
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This problem is a linear 0–1 problem with n.n � 1/=2 variables and 3
2
n.n � 1/C 1 constraints. We can

further rewrite it in a more compact form using the fact that xi D 0 implies wij D 0, j D i C 1; ::; n.
Thus, instead of (68c) and (68d) we may write

nX
jDiC1

wij � nxi ; i D 1; : : : ; n � 1;

which reduces the number of constraints to 1
2
n.n � 1/C n.

In what follows, we present an improved mixed-integer linear formulation of (67) with only O.n/ vari-
ables and constraints. Recall that originally we had only one constraint,

nX
i;jD1
i¤j

.aij � /xjxi � 0;

which we may rewrite as
nX
iD1

xi

0@xi C nX
jD1

.aij � /xj

1A � 0:
Let us define the variables wi 2 R, i D 1; : : : ; n, as follows

wi D xi

0@xi C nX
jD1

.aij � /xj

1A ; i D 1; : : : ; n:

Next, observe that each of the quadratic equalities above is equivalent to four linear inequalities

wi � nxi ;

wi � �nxi ;

wi � xi C

nX
jD1

.aij � /xj � .1 � xi /n;

wi � xi C

nX
jD1

.aij � /xj C .1 � xi /n;

xi 2 f0; 1g; wi 2 R:

Therefore, the problem of finding a maximum  -clique can be represented as the following mixed integer
linear programming problem with 2n variables (n binary variables and n continuous variables) and 4nC1
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constraints:

max
nX
iD1

xi

s. t.
nX
iD1

wi � 0;

wi � nxi ; i D 1; : : : ; n;

wi � �nxi ; i D 1; : : : ; n;

wi � xi C

nX
jD1

.aij � /xj � .1 � xi /n; i D 1; : : : ; n;

wi � xi C

nX
jD1

.aij � /xj C .1 � xi /n; i D 1; : : : ; n;

xi 2 f0; 1g; wi 2 R; i D 1; : : : ; n:

(69)

5.3 Computational experiments

In this section we illustrate the theoretical developments presented above using numerical computations
of the maximum  -clique in randomly generated graphs. In particular, the numerical studies are aimed
at elucidating the following two aspects: (i) whether the asymptotic bounds (64), (65) on the size of the
maximum  -cliqueM 

n and its mean value hold for relatively small values of n, and (ii) the manifestation
of the phase transition effect in the order of magnitude of the maximum  -clique in finite-size random
graphs when p approaches  .

According to Remark 3, in large enough random graphsG.n; p/ the average size EŒM 
n � of the maximum

 -clique belongs to the interval

�
m1n; m


n

�
D

264 2 lnn

ln
�
1
p

� ; 2 lnn

ln
�

p

� �
1�
1�p

�1�
375 ; (70)

provided that p <  . Therefore, it was of interest to determine the applicability of the above bounds for
relatively small values of n.

To this end, in the first set of computational experiments we generated a number of instances of uniform
random graphs G.n; p/ with n D 100 and p ranging from 0:05 to 0:15; namely, we generated 100
instances of G.100; p/ for every p. Then, we employed the MIP formulation (69) to find the maximum
 -cliques in the generated graphs for values  D 0:9 and  D 0:85. Such a choice of parameters
is justified by relatively better numerical tractability of the MIP problem (69) for sparse graphs. We
used FICOTM Xpress Optimization Suite 7.1 Xpress to solve the resulting instances of problem (69).
The resulting average values of M 

100, as well as the minimum and maximum values of M 
100 over 100

instances for each p, are reported in Table 8.

In the second set of computational experiments, we analyzed the behavior of the relative size of the max-
imum  -clique for a fixed  and different values of p and n. We used  D 0:70 and two sequences of p
values: fp1; : : : ; p100g D f0:006; 0:012; : : : ; 0:600g and fp101; : : : ; p200g D f0:601; 0:602; : : : ; 0:700g.
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Note the increased “density” of the second sequence, which allows for a more thorough investigation of
the maximum  -clique size when the value of p becomes close to  . For each value of n D 500, 1000,
5000, 1000, 20000 and pi from the sequence defined above, we generated instances of uniform random
graphs G.n; pi /, and determined the maximum  -clique size M 

n . Since the MIP formulation (69) be-
comes computationally intractable for large dense graphs, we used maximum  -clique GRASP heuristics
due to Abello et al. (2002), which were reported to perform quite well in massive graphs. Figure 8 reports
the results of the described computational studies, and Figure 9 presents the results of similar studies for
 D 0:5.

Recall that it was shown in Section 2 that with probability that approaches to 1 one has

lim
n!1

M

n

n
D

(
0; p < ;

1; p > ;

or, in other words, the relative size of the maximum  -clique in uniform random graphs as a function
of the density p of the graph with high probability represents a step function as n ! 1. The results
presented in Figures 8 and 9 illustrate the convergence of the relative size of maximum clique to the
aforementioned limits as n increases.
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Figure 8: Relative size of the maximum  -cliques in the uniform random graphs for  D 0:7, n D 500,
1000, 5000, 1000, 20000, and 0 < p < 0:8.

6 A bit-parallel algorithm for finding k-cliques in a k-partite graph

Given an (undirected) graph G D .V;E/, where V is set of nodes and E is the set of arcs, a clique in G
is defined as a complete subset of G, i.e., a set of nodes in V that are pairwise adjacent. A clique of size
k is called k-clique; the largest clique in a graph is called the maximum clique and its size is denoted by
!.G/. Note thatG may contain several cliques of size !.G/. Closely related to the concept of a clique is
that of an independent set of G, defined as an induced subgraph of V whose nodes are pairwise disjoint.
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Figure 9: Relative size of the maximum  -cliques in the uniform random graphs for  D 0:5, n D 500,
1000, 5000, 1000, 20000, and 0 < p < 0:6.

Table 8: Average (EŒM 
n �), minimum (M 

n), and maximum (M


n) values of the maximum  -clique size,
computed over 100 instances of uniform random graphs G.n; p/ for n D 100 and  D 0:85; 0:90. The
lower and upper bounds m1n, nn are given by (70).

 D 0:85  D 0:90

p m1n m

n EŒM 

n �
h
M

n;M



n

i
m1n m


n EŒM 

n �
h
M

n;M



n

i
0.05 3.07 4.32 3.10 [3, 4] 3.07 3.88 3.10 [3, 4]
0.06 3.27 4.66 3.26 [3, 5] 3.27 4.16 3.26 [3, 5]
0.07 3.46 4.98 3.38 [3, 5] 3.46 4.44 3.38 [3, 5]
0.08 3.65 5.30 3.60 [3, 5] 3.65 4.71 3.60 [3, 5]
0.09 3.82 5.62 3.97 [3, 5] 3.82 4.97 4.97 [3, 5]
0.10 4.00 5.94 4.27 [3, 5] 4.00 5.50 4.24 [3, 5]
0.11 4.17 6.26 4.66 [4, 5] 4.17 5.77 4.65 [4, 5]
0.12 4.34 6.58 4.87 [4, 6] 4.34 6.04 4.82 [4, 5]
0.13 4.51 6.91 5.06 [5, 6] 4.51 6.04 5.00 [5, 5]
0.14 4.68 7.25 5.19 [5, 6] 4.68 6.31 5.01 [5, 6]
0.15 4.85 7.59 5.67 [5, 7] 4.85 6.59 5.06 [5, 6]
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The Maximum Clique Problem (MCP) consists in finding the largest clique in a graph, and is of fun-
damental importance in discrete mathematics, computer science, operations research, and related fields
Bomze et al. (1999). In many applications it is of interest to identify all maximum cliques in a graph.
This problem is known as the Maximum Clique Enumeration Problem (MCEP). In the present work, we
consider a special case of the MCEP, concerned with finding all k-cliques in a k-partite graph. A graph
G D .V;E/ is called k-partite if the set of nodes V can be partitioned into k independent sets, or partites
Vr , r D 1; : : : ; k:

V D

k[
rD1

Vr ; Vr \ Vs D ;; r ¤ s; such that for all i; j 2 Vr W .i; j / … E: (71)

Clearly, one has that !.G/ � k in a k-partite graph G, since the maximum clique cannot contain more
than one node from each independent set Vr . The problem of finding k-cliques in k-partite graphs has
found applications in textile industry Grunert et al. (2002), data mining and clustering Peters (2005), and
identification of protein structures Liu and Chen (2009). This problem is not necessarily equivalent to
MCEP since it does not account for maximum cliques with !.G/ < k.

Grunert et al Grunert et al. (2002) proposed branch-and-bound algorithm FINDCLIQUE for the problem
of finding all k-cliques in k-partite graphs, which takes as an input a graph G D .V;E/, where V
satisfies (71), and produces the set Q of k-cliques contained in G as an output. FINDCLIQUE is a
recursive method, such that level t of recursion corresponds to the level t of branch-and-bound tree,
which in turn, is associated with the t -th partite that is branched on in V . Starting at the root .t D 0/ of
the branch-and-bound tree with a partial solution S D ;, at each step of branch-and-bound procedure a
node is added to or removed from S until S amounts to a k-clique in G, i.e., jS j D k, or it is verified
that G contains no k-cliques, !.G/ < k.

Let B D f1; : : : ; kg be the index set of partites in G, V D
S
b2B Vb , and BS denote the set of partites

that have a node in S :
BS D fb 2 B j Vb \ S ¤ ;g:

Given a partial solution S , a node is called compatible if it is adjacent to all the nodes in S ; the set of
compatible nodes w.r.t. S is denoted by CS :

CS D fi 2 V j .i; j / 2 E 8 j 2 Sg:

The set CS is further partitioned into subsets containing nodes from the same partite:

CS D
[
b2BS

CS;b;

where BS D B n BS , and CS;b � Vb is given by

CS;b D
[
s2S

.Vb \N.s//;

with N.s/ being the set of nodes adjacent to node s.

At the root node of the branch-and-bound tree .t D 0/, one has S D ;, B D BS D f1; : : : ; kg, BS D ;,
and CS;b D Vb for all b 2 B . At a level t of the branch-and-bound tree, bt 2 BS is selected as the
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partition to branch on. In order to achieve the greatest reduction in the size of the branch-and-bound tree
when pruning, bt is selected as the partition with the smallest number of nodes:

bt 2 arg min
b

fjCS;bj j b 2 BSg: (72)

As long as there is a node nt 2 CS;bt that is not traversed, the search process is restarted from this point
with S WD S [ fntg as the new partial solution. To this end, the set CS of compatible nodes is updated
with respect to S [ fntg:

CS;b WD CS;b \N.nt / for all b 2 BS : (73)

Maintaining the sets CS;b of nodes compatible with the current partial solution S is a key aspect of the
algorithm, thus for backtracking purposes the nodes that are removed from CS;b during (73) are added
to the set C D

Sk
tD1 C t , which is similarly partitioned into k levels C t , each level corresponding to

level t of the branch-and-bound tree. In other words, C t contains the nodes in CS;b that are not adjacent
to node nt :

C t D fi 2 CS;b j .i; nt / … E; b 2 BSg:

Obviously, after this step, CS;bt D ;. A subproblem with a partial solution S is promising if all of the
partitions in CS that do not share a node in the partial solution are nonempty:

jCS;bj > 0 for all b 2 BS ; b ¤ bt : (74)

Let P be the number of partitions CS;b � CS that contain at least one node; then, an upper bound on the
size of the largest clique containing S is given by jS j C P . If jS j C P D k, the current subproblem is
feasible, meaning S may be part of a k-clique. For a feasible subproblem, the algorithm traverses deeper
into the branch-and-bound tree, t WD t C 1, and a new subproblem is created.

Accordingly, a subproblem with partial solution S is pruned if

jS j C P < k; (75)

i.e., there exists no clique of size k that contains S . For a nonpromising subproblem, set CS;bt is restored
by moving the nodes in C t back to CS , CS WD CS [ C t . The last operation implicitly requires that the
nodes from C t are put back into the partitions of CS that they were removed from:

CS;�.v/ WD CS;�.v/ [ v for all v 2 C t ; (76)

where �.i/ is the index of the partite that node i belongs to: i 2 V�.i/; moreover, the relative orders
of nodes in the partites Vb should be preserved in CS;b , given that the nodes in G are assumed to be
ordered/numbered.

The search process is then restarted, provided that there exists a node in partition CS;bt that is not
traversed. If there is no such node, FINDCLIQUE returns to the previous level t � 1 of the branch-and-
bound tree.

6.1 A bitwise algorithm for finding k-cliques in a k-partite graph

In this section, we present an algorithm, referred to as BitCLQ, for the k-clique enumeration problem in a
k-partite graph, which improves upon the FINDCLIQUE algorithm of Grunert et al Grunert et al. (2002)
by introducing bitset data structures and utilizing bit parallelism for updating the set of compatible nodes
and improving backtracking.
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6.1.1 Bitsets

Bitsets are essentially binary vectors, or sequences of bits, and as such can be utilized efficiently in com-
puter codes. Particularly, bitsets are useful for storing adjacency matrices of graphs, or specific subsets of
ordered sets. For example, in a graph on six nodes fv1; : : : ; v6g D V , a clique with nodes v1; v2; v3; v5
can be represented by a bitset f111010g, where each bit corresponds uniquely to a node in the graph, with
the significant bits (i.e., bits equal to 1) indicating the nodes in the clique. Bit parallelism is a form of
parallel computing that achieves computational improvements by representing the problem data in bitsets
of size R, where R is the machine word size (e.g., 32 or 64), such that they can be processed together
within a single processor instruction. Bit parallelism has been successfully used in many computational
algorithms, particularly for string matching (Grabowski and Fredriksson, 2008; Hyyrö, 2005; Hyyrö and
Navarro, 2004). Recently, bit parallelism has been employed for solving hard combinatorial problems,
such as SAT Segundo et al. (2008) and the Maximum Clique Problem San Segundo et al. (2011).

In the present work, bit parallelism is used to improve the computational procedure for updating the set
of compatible nodes in (73), and, moreover, to achieve faster backtracking by eliminating the need for
set C . In addition, use of bitsets allows for improvements in memory storage efficiency for problem data
structures, such as the set of compatible nodes and the adjacency matrix of the graph.

Of particular significance in the context of the present work is the operation of indexing the first
significant bit in a bitset, also known as the forward bit scanning. One of the techniques for this
purpose relies on use of the De Bruijn sequence with a perfect hash table Leiserson et al. (1998,
http://supertech.csail.mit.edu/papers/debruijn.ps). The value to be looked up in the hash table is given by
HR below:

HR WD .x ^ �x/D � .R � log2R/; (77)

where x is the bitset for which the first significant bit has to be indexed, D is an instance of De Bruijn
sequence, R is the machine word size, and� stands for the binary shift right operator. HR is effective
for bitsets of maximum size equal to R. For larger bitsets, special containers need to be devised. The
hash table required to look up the value of HR is created based on the particular De Bruijn sequence
used in (77).

Note that in (77) multiplication is performed modulo R and only the last log2R bits of the result will be
retained. More details on forward bit scanning and the specification of the De Bruijn sequence used in
(77) can be found in Leiserson et al. (1998, http://supertech.csail.mit.edu/papers/debruijn.ps).

6.1.2 BitCLQ

Below we present a modification of FINDCLIQUE, which we refer to as BitCLQ, that uses bitset data
structures and bit parallelism for keeping track of the nodes inG that are compatible to the current partial
solution S , while simultaneously reducing the computational cost of backtracking.

To this end, we introduce a set R consisting of k levels, Z1; : : : ; Zk . Each of these k levels will be used
to represent the compatible nodes to the partial solution S at the t -th level of the branch-and-bound tree,
where 1 � t � k. Every level in Z is further partitioned into k sets, each corresponding to a partite Vb
in G:

Zt D
[
b2B

Zt;b; t D 1; : : : ; k:

The sets Zt;b are represented by bitsets of size jVbj. Let Zt;b;i be the i -th bit in Zt;b corresponding to
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the i -th node in Vb , such that Zt;b;i D 1 if the i -th node in Vb is compatible with all the nodes in the
partial solution S at the t -th level of the branch-and-bound tree in BitCLQ:

Zt;b;i D

�
1; if .i; j / 2 E for all j 2 St I
0; otherwise:

Clearly, each level Zt of Z is an ordered set of combination of bitsets with the total size jV j. Further,
the adjacency matrix M of graph G is stored in the bitset form, with the convention that the i -th row
(column) corresponds to the i -th bit in Zt , t D 1; : : : ; k.

BitCLQ is initialized by setting t WD 0, S WD ;, B D BS WD f1; : : : ; kg, and Q WD ;, where Q is the
set of all k-cliques in G. Note that since at the beginning all the nodes in G can be added to S to extend
its size, all the bits in Z1 are significant:

Z1;b;i D 1 for all b 2 B.St /; i 2 Vb:

At level t of the branch-and-bound tree, the partition bt to branch on is selected as

bt 2 arg min
b

fjZt;bj j b 2 BSg; (78)

where jZt;bj is defined as the number of significant bits in the bitset Zt;b . The forward bit scanning
method discussed in Section 6.1.1 is used to identify node nt 2 Vbt that has not been traversed and thus
can be added to the partial solution. As long as such a node exists in Vbt , the search process is restarted
with S WD S [ fntg as the partial solution, and the corresponding bit in Zt;bt is set to 0.

Utilizing bitsets also facilitates the process of updating the compatible nodes: when nt is added to partial
solution, ZtC1 is created by performing a logical AND operation with Zt and the row M.nt / of the
adjacency matrix corresponding to the node nt as operands:

ZtC1 D Zt ^M.nt /: (79)

Similarly to FINDCLIQUE, let P denote the number of partitions Zt;b with jZt;bj > 0 at level the t
of the branch-and-bound tree. If jS j C P D k, the current partial solution is promising, so that a new
subproblem is created, and BitCLQ proceeds one level deeper into the branch-and-bound tree, t WD tC1.
If the partial solution is not promising, the method presented in Section 6.1.1 is used to select nodes in
Vbt that have not been traversed. If such a node is found, the search process is restarted, otherwise
backtracking is performed by simply updating t WD t � 1. Note that due to the special structure of
Z, BitCLQ does not need to restore the set of compatible nodes during backtracking, in contrast to the
update procedure (76) for the set CS that is performed in FINDCLIQUE.

6.1.3 Example

As an illustration, consider the 3-partite graph that is shown along with its adjacency matrixM in Figure
10, where the partite 1 consists of nodes f1; 2; 3g, partite 2 contains nodes f4; 5; 6g, and partite 3 contains
nodes f7; 8; 9g. BitCLQ is initialized by setting S WD ;, BS WD f1; 2; 3g and Z1 WD f111j111j111g.
Since all the partites are of the same size, i.e. jZ1;bj D 3 for all b 2 BS , the one to branch on is chosen
arbitrarily; assume that the first partite Z1;1 is chosen for branching. The search process from this point
restarts 3 times, each time adding one of the three nodes in Z1;1. The first node to add to S is node 1,
Z1;1;1 is then set to 0, and Z2 is subsequently created by performing logical AND operation with Z1
and the corresponding row of the adjacency matrix M as operands:
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Algorithm 2 BitCLQ.t/
1: bt 2 arg minb fjZt;bj j b 2 BSg
2: i WD the first significant bit in Zt;bt
3: repeat
4: nt := the i -th node in bt
5: Zt;b;i WD 0

6: S WD S [ fntg

7: if jS j D k then
8: Q WD Q [ S

9: S WD S n fntg

10: else
11: ZtC1;b WD Zt;b ^M.nt / for all b 2 BS
12: BS WD BS [ fbtg; BS WD BS n fbtg
13: P WD number of partitions Zt;b with jZt;bj > 0, b 2 BS
14: if jS j C P D k then
15: BitCLQ.t C 1/
16: S WD S n fntg

17: BS WD BS n fbtg; BS WD BS [ fbtg
18: else
19: S WD S n fntg

20: BS WD BS n fbtg; BS WD BS [ fbtg
21: end if
22: end if
23: i WD the first significant bit in Zt;bt
24: until i � jVbt j

t WD 1,
S WD f1g,
Z2 WD Z1 ^M.1/ D f011j111j111g ^ f000j111j011g D f000j111j011g,
BS WD f2; 3g.

As a result, the setZ2 of nodes compatible with the partial solution S D f1g contains nodes f4; 5; 6; 8; 9g.
Since none of the partites in BS is empty, the partial solution S is promising and a new subproblem is
created. The objective in the new subproblem is to find a jBS j-clique in Z2. A node from Z2;3 will be
added to S (since jZ2;3j < jZ2;2j). The first node in Z2;3 to add to the partial solution is node 8. The
bit corresponding to node 8 is set Z2;3;2 WD 0, and we have

t WD 2,
S WD f1; 8g,
Z3 WD Z2 ^M.8/ D f000j111j001g ^ f111j001j000g D f000j001j000g,
BS WD f2g.

Again, the partites in BS contain at least 1 node (node 6) in Z3. So the partial solution is promising, and
a new subproblem is created. In the next step, node 5 is added to S :

t WD 3,
S WD f1; 8; 6g.

At this point, since jS j D k D 3, i.e., a k-clique is found. To continue the search for other k-cliques, the
last node in S is removed. BitCLQ searches Z3;2 for another node that can be added to S . Since such a
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M D

0BBBBBBBBBBB@

1 2 3 4 5 6 7 8 9

1 0 0 0 1 1 1 0 1 1
2 0 0 0 0 0 1 0 1 1
3 0 0 0 0 0 0 0 1 1
4 1 0 0 0 0 0 1 0 0
5 1 0 0 0 0 0 1 0 1
6 1 1 0 0 0 0 1 1 0
7 0 0 0 1 1 1 0 0 0
8 1 1 1 0 0 1 0 0 0
9 1 1 1 0 1 0 0 0 0

1CCCCCCCCCCCA
Figure 10: A 3-partite graph and its adjacency matrix.

node does not exist, the algorithm backtracks: t WD 2, node 8 is removed from S , and BitCLQ restarts
with S D f1; 9g as the partial solution.

6.2 Numerical Results

In order to illustrate the performance of the proposed method, the k-clique enumeration problem for
k-partite graphs has been solved by BitCLQ and FINDCLIQUE for randomly generated graph instances
of several types. Both algorithms were implemented in C++ and ran on a 64-bit Windows machine
with 3GHz dual-core processor and 4GB of RAM. It is worth noting that the original implementation
of FINDCLIQUE algorithm by Grunert et al Grunert et al. (2002) relies on the use of vectors and
links data types from the C++ standard template library (STL). In our experiments, we observed
that by replacing the original data structure of vectors of lists with arrays, up to 300% improvement in
FINDCLIQUE running time is achieved on the data sets used in our case study. The numerical results
reported for the FINDCLIQUE algorithm are obtained using this “improved” implementation.

Our numerical experiments involve randomly generated instances of k-partite graphs of two types. The
first set of instances consists of two groups: small-size instances and large-size instances. In the small-
size instances, k-partite graphs are randomly generated with the number of partites in the range k 2
Œ3; 10�. For each value of k, the reported running times and the number of k-cliques in the graph are
averaged over 10 instances. Table 9 shows the summary of the experimental results for this first group.
The columns of the table show the number k of partites in the k-partite graph, the number m of nodes
in each partite of the graph, the total number jV j of nodes in the graph, the graph’s density p, and
the total number of k-cliques in the graph (#CLQ). The density parameter p is used for generation
of the graphs, and is equal to the probability of an edge connecting two nodes from different partites:
Pr
˚
.vi ; vj / 2 E

	
D p.

The second group include instances of larger size with the values of k 2 f25; 50; 75; 100g. For each
value of k in this group, 10 random instances of the k-partite graph have been generated and solved by
FINDCLIQUE and BitCLQ. Table 10 summarizes the results of the experiments for this group. Since
the graphs used in this set of experiments are rather large and the list of all k-cliques contained in them
may not be found in a reasonable time, the solution process has been terminated after 200 seconds and
the number of k-cliques found by each method was recorded. BitCLQ outperformed FINDCLIQUE in
all cases.

The second set of experiments was conducted to compare the performance of BitCLQ with FIND-
CLIQUE on randomly generated instances of Multidimensional Assignment Problem (MAP). As shown
in Krokhmal et al. (2007); Krokhmal and Pardalos (2011); Mirghorbani et al., high-quality solutions for
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Table 9: Average computational time (in seconds) to find all the k-cliques (#CLQ) contained in randomly
generated k-partite graphs.

k m jV j p #CLQ FINDCLIQUE BitCLQ

3 100 300 0.1 1004 0.005 0.002
4 100 400 0.15 1124 0.008 0.002
5 100 500 0.2 1047 0.015 0.003
6 100 600 0.25 939 0.031 0.006
7 50 350 0.35 192 0.009 0.004
8 50 400 0.4 299 0.021 0.007
9 50 450 0.45 683 0.055 0.021
10 50 500 0.5 2672 0.176 0.071

Table 10: Average number of k-cliques found in randomly generated instances of k-partite graphs after
200 seconds.

k m jV j p time FINDCLIQUE BitCLQ

25 40 1000 0.8 200 13,556,733 23,516,581
50 30 1500 0.9 200 800,369 1,032,111
75 30 2250 0.95 200 557,042,389 735,722,241

100 30 3000 0.95 200 348,416 365,799

randomized MAPs can be obtained as n-cliques in n-partite graphs that are constructed in a special way
from the problem’s data (in this case, n denotes the number of elements per dimension in a d -dimensional
MAP). For MAPs with random iid costs, the resulting n-partite graph can be viewed as randomly gen-
erated with a certain density. The corresponding results are reported in Table 11, where n denotes the
number of partitions in the graphs, and d is the number of dimensions d in the MAP.
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Burkard, R. E. and Çela, E. (1999b) “Quadratic and three-dimensional assignments,” in: M. Dell’Amico,
F. MQoli, and S. Martello (Eds.) “Annotated Bibliographies in Combinatorial Optimization,” 373–391,
Wiley, Chichester.
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Erdös, P. and Rényi, A. (1960) “On the Evolution of Random Graphs,” Publication of the Mathematical
Institute of the Hungarian Academy of Sciences, 5, 17–61.

Erdös, P. and Spencer, J. H. (1974) Probabilistic Methods in Combinatorics, Academic Press, New York.

Feller, W. (1968) An Introduction to Probability Theory and Its Applications, volume I, John Wiley &
Sons, New York, 3rd edition.

Frank, J. and Martel, C. U. (1995) “Phase Transitions in the Properties of Random Graphs,” in: “Princi-
ples and Practice of Constraint Programming (CP-95,” 62–69.

Frenk, J. B. G., van Houweninge, M., and Rinnooy Kan, A. H. G. (1985) “Asymptotic properties of the
quadratic assignment problem,” Mathematics of Operations Research, 10 (1), 100–116.

Frenk, J. B. G., van Houweninge, M., and Rinnooy Kan, A. H. G. (1987) “Order Statistics and the Linear
Assignment Problem,” Computing, 39 (2), 165–174.

Goemans, M. X. and Kodialam, M. S. (1993) “A lower bound on the expected value of an optimal
assignment,” Mathematics of Operations Research, 18 (2), 267–274.

Grabowski, S. and Fredriksson, K. (2008) “Bit-parallel string matching under Hamming distance in
O.ndm=we/O.ndm=we/ worst case time,” Information Processing Letters, 105 (5), 182–187.

Grimmett, G. R. and McDiarmid, C. J. H. (1976) “On colouring random graphs,” Mathematical Pro-
ceedings of Cambridge Philosophical Society, 77, 313–324.

Grundel, D., Krokhmal, P., Oliveira, C., and Pardalos, P. (2007) “On the number of local minima in the
multidimensional assignment problem,” Journal of Combinatorial Optimization, 13 (1), 1–18.

Grunert, T., Irnich, S., Zimmermann, H., Schneider, M., and Wulfhorst, B. (2002) “Finding all k-cliques
in k-partite graphs, an application in textile engineering,” Computers & Operations Research, 29 (1),
13–31.

Hahn, P. M., Kim, B.-J., Stuetzle, T., Kanthak, S., Hightower, W. L., Samra, H., Ding, Z., and Guignard,
M. (2008) “The quadratic three-dimensional assignment problem: Exact and approximate solution
methods,” European Journal of Operational Research, 184 (2), 416–428.

Hamming, R. W. (1950) “Error Detecting and Error Correcting Codes,” Bell System Technical Journal,
26 (2), 147–160.
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